Dieter Stotz

Elektromagnetische Verträglichkeit in der Praxis

Design-Analyse – Interpretation der Normen – Bewertung der Prüfergebnisse

3. Auflage

Elektromagnetische Verträglichkeit in der Praxis

Dieter Stotz

Elektromagnetische Verträglichkeit in der Praxis

Design-Analyse – Interpretation der Normen – Bewertung der Prüfergebnisse

3. Auflage

Dieter Stotz Babenhausen/Bayern, Deutschland

ISBN 978-3-662-62220-9 ISBN 978-3-662-62221-6 (eBook) https://doi.org/10.1007/978-3-662-62221-6

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2013, 2019, 2021

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer-Verlag GmbH, DE und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Heidelberger Platz 3, 14197 Berlin, Germany

Meiner Frau Karin Smiley gewidmet

Zum Gedenken an meinen Vater

Vorwort zur ersten Auflage

Elektromagnetische Verträglichkeit (EMV) hat heute nicht mehr den Status eines Kunstwortes. Es ist vielmehr allgegenwärtig – allerdings häufig sehr zum Leidwesen der Firmen. Denn die Einhaltung der Richtlinien und Gesetze ist formal betrachtet nicht gewinnbringend, sondern erst einmal mit enormen Kosten verbunden. Die fatale Konsequenz daraus ist oftmals die Vernachlässigung der EMV bei der Entwicklung von Produkten. Spätestens beim Einsatz im Feld respektive beim Kunden wirken sich derartige Mankos kostenintensiv aus – manche dadurch notwendig gewordenen Rückholaktionen können gar die Existenz der Herstellerfirma gefährden. Zumindest geht ein enormer Image-Schaden mit einem solchen Vorfall einher, und dieser Schaden äußert sich früher oder später stets negativ in den Umsatzzahlen.

Die Einhaltung der EMV-Richtlinie hat natürlich nicht nur eine rechtliche Motivation, sondern auch eine technische. Letztlich soll ja eine Steigerung der Zuverlässigkeit erzielt werden – und dies im Zusammenspiel mit anderen, möglicherweise unbekannten Komponenten. Der technische Fortschritt bringt leider selten Erleichterung bezüglich der Forderungen an Störfestigkeit oder Störaussendungspotenzial.

Bereits Ende der 80er-Jahre wurde von der Europäischen Gemeinschaft eine offizielle Richtlinie (die EMV-Richtlinie) aufgestellt. Das Ziel war eine Harmonisierung zwischen unterschiedlichen Forderungen einzelner Länder.

Der Leser wird intuitiv mit dem Thema vertraut gemacht. Bereits während der Entwicklungsphase bietet das Buch als Nachschlagewerk Hilfe für Fragen zum Design. Doch auch dann, wenn bereits Probleme aufgetaucht sind, wird man hier eine strukturierte Hilfe finden. Somit ist auch nach einem Störfall noch Rettung in Sicht.

Bei der Verfassung und Aufbereitung kam es mir vor allem darauf an, dem Leser den Praxisbezug des Stoffes zu vermitteln. Somit liegt der Schwerpunkt nicht auf der detaillierten mathematischen Beschreibung, sondern auf der Anschauung. Der Leser soll ein Gespür für EMV und die einhergehenden Wellen- und Feldeffekte bekommen, sodass das Einschätzen von Problemen und passender Lösungen möglich wird. Dieser Praxisbezug geht sogar so weit, dass der ambitionierte Leser durchaus eigene Hilfsmittel für EMV-Messungen wird herstellen können. Die Begleitung in ein EMV-Testhaus erfolgt nach der Lektüre mit einem gesteigerten Kritikbewusstsein, sodass das EMV-Personal nicht nur einen Kunden vor sich sieht, sondern einen kompetenten Partner, der in der EMV-Problematik mitreden kann. Auf diese Weise ist auch gewährleistet, dass Tipps zur Verbesserung besser verstanden und umgesetzt werden können.

Das Vakuum zwischen Firmenkundschaft und EMV-Firmen muss verschwinden und mit Entwickler-Knowhow aufgefüllt werden, auf diese Weise wird sich die EMV-Struktur noch weiter verfeinern und an echten und realistischen Bedürfnissen ausrichten.

Schwerpunkte dieses Buches sind die Analyse von EMV-Problemen auf Simulationsebene und die Durchführung praktischer Messungen – jedoch nicht nur EMV-Messungen nach Norm.

Viele Entwickler empfinden häufig die Anwendung der korrekten, relevanten Normen als Unsicherheitsfaktor. Die richtige Interpretation der Norm ist dabei ebenso wichtig wie die Bewertung der Prüfergebnisse. Normen-Ausgaben ändern sich zwar, jedoch hat man hier auch einen Weg aufgezeigt, wie man an die richtige Norm kommt.

Wer eigenes Equipment anschaffen möchte, dem wird dieses Buch eine hilfreiche Stütze sein für den Einstieg, den adäquaten Betrieb der Messgeräte sowie den korrekten Messaufbau. Doch auch für Leser ohne teuren Messgerätepark gibt es in diesem Buch einige Tipps, wie mit einfachen Mitteln reproduzierbare Trendmessungen anzustellen sind.

Bei der Darlegung von komplexer und zum Teil etwas trockener Themen findet oft eine Auflockerung durch Praxisbezüge statt, die in eingerückter Sonderschrift erscheinen. Zum einen soll damit die Thematik etwas transparenter werden – außerdem spornt der beabsichtigte Aha-Effekt zum Weiterlesen an. Dem Leser mag vielleicht die Aufteilung der Kapitel etwas ungewöhnlich erscheinen – es war jedoch durchaus beabsichtigt, nicht nur an Themen orientiert zu strukturieren, sondern daran, welche Voraussetzungen beim individuellen Leser bestehen (z. B. will er nur Grundlagen zu EMV-Messungen erwerben oder möchte er mit geringstem Aufwand Eigenmessungen durchführen, hat er gar spezifische Probleme mit seinem Mikrocontroller-Konzept?).

Das Gesamtwerk ist unterteilt in zwei Teile: Grundlagen und Festlegungen einerseits und praktische Tipps und Vorgehensweisen andererseits. Diese Separation scheint sinnvoll, so kann sich der Leser orientieren an Gegebenheiten, Standards und Richtlinien, er kann aber auch seiner eigenen Inspiration folgen und Anregungen befolgen oder intuitive Grenzen überschreiten.

Das Literaturverzeichnis am Ende des Buches korrespondiert mit Stellen im Text, die am Ende von Absätzen durch [nn] bezeichnet sind. Dabei handelt es sich teils um Basisliteratur und teils um weiterführende Werke (da ja manche Details hier nur ein wenig tangiert werden).

Das Buch entstand unter Aufbringung großer Sorgfalt. Trotzdem sind natürlich Fehler oder Unklarheiten nicht ganz auszuschließen. Für die Aufdeckung von Sach- und Rechtschreibfehlern bzw. für die Darlegung von Verbesserungen sind Verlag und Autor dankbar.

Mein Dank gilt nachstehenden Personen und Firmen (in alphabetischer Reihenfolge), die mir mit ihren Bereitstellungen große Dienste geleistet haben. Natürlich habe ich auch nicht zuletzt dem Springer-Verlag zu danken, denn ohne ihn wäre es kaum möglich, solch qualitative Werke der Wissenschaft und Technik herzustellen.

- EM Software & Systems GmbH, Herr René Fiedler Simulations-Programm FEKO
- EM Test GmbH
- Ing.-Büro FRIEDRICH Layout-Programm TARGET
- Langer, EMV-Technik GmbH
- mikes-testingpartners gmbh
- Schwarzbeck Mess Elektronik OHG
- Tera Analysis Simulations-Programm Quickfield

Babenhausen/Schwaben, Deutschland August 2012 Dieter Stotz

Vorwort zur zweiten, verbesserten und erweiterten Auflage

Mit wachsender Industrialisierung in puncto IoT (Internet of Things) und der damit zusammenhängenden Automatisierung und Sensorik sind die Anforderungen weiterhin gewachsen. Dies gilt sowohl in Bezug auf Störfestigkeit als auch auf Störaussendung. Sensoren werden immer empfindlicher, die Störkulisse immer hartnäckiger – da fällt es schwer, für Geräte einen sicheren und störungsfreien Betrieb zu gewährleisten. Hersteller von solchen Geräten müssen dies jedoch, und sie müssen dies sogar messtechnisch und dokumentarisch belegen können.

Die aktuelle Richtlinie 2014/30/EU (EMV-Richtlinie) hat sich in einem Punkt gegenüber der bisherigen Fassung 2004/108/EG markant geändert: Es ist vom Hersteller eine Risikoanalyse und -bewertung zu erstellen, die einer Überprüfungsbehörde ggf. vorzulegen sind. Es genügt demnach nicht mehr, die EMV-Konformität anhand von Prüfberichten zu belegen, sondern es sind weitreichende Mehrarbeiten an Dokumentation zu bewältigen. Wie eine solche Analyse auszusehen hat, darüber ist derzeit im Internet noch relativ wenig zu recherchieren. Ein Grund, dies zum Thema der Neuauflage dieses Buches zu erklären. Ein ganzes Unterkapitel wurde hierzu verfasst.

Ergänzungen bezüglich entwicklungsbegleitender Tests, Koppelmechanismen und Normenaktualisierungen sowie Diskussionen bei Nichterfüllung einer Prüfung erhielten ebenfalls besonderes Augenmerk.

Mein Dank gilt Tobias Kauer der *Fa. tobka Electronics*, der mir freundlicherweise einen Datenlogger zur Verfügung stellte und Anpassungen am Programm durchführte.

Dem Springer-Verlag habe ich zu danken, namentlich Frau Bromby, für die Lenkung des Organisatorischen und die hochqualitative Aufbereitung des Buches.

Babenhausen/Schwaben, Deutschland Januar 2019

Dieter Stotz

Vorwort zur dritten, verbesserten und erweiterten Auflage

Es sind tatsächlich keinerlei neuen physikalischen Effekte zu erwarten, wenn die tägliche EMV-Testpraxis scheinbar neue, merkwürdig anmutende Symptome zutage treten lässt. Die hohe Kunst bei der Analyse von EMV-Problematiken ist jene, von spezifischen Erscheinungen auf deren Ursache zu schließen. Und die zugrunde liegenden Ursachen sind hier häufig alles andere als offensichtlich.

Um also primär merkwürdig erscheinende Symptome zu beurteilen, sind Erfahrungen mit neuen Fällen unerlässlich. Solche Fallstudien wurden in dieser vorliegenden Auflage aufgenommen. Weiterhin kam ein Bauvorschlag für einen Generator samt Vorerstärker mit in die Ergänzung, sodass kleinere Firmen für bestimmte Precompliance-Messungen keine teuren Geräte anschaffen müssen. Vieles von dem, was Unsicherheit erzeugt, könnte vermieden werden, wenn nicht unbekanntes Mess-Equipment nötig ist. Stattdessen ist der Einsatz selbstgebauter Geräte geeignet, nicht nur, um Geld zu sparen, sondern sich mit der Materie noch besser auseinanderzusetzen.

Ergänzt wurde das Buch ferner durch eine Kurzbeschreibung der Simulations-Software *Multisim* von National Instruments, das sich bestens zur Bauteile-Dimensionierung und auch zum Nachstellen von Störungsphänomenen eignet.

Wie immer danke ich dem Springer-Verlag für die reibungslose Zusammenarbeit, selbst in Zeiten der Corona-Krise.

Babenhausen/Schwaben, Deutschland August 2020 Dieter Stotz

Inhaltsverzeichnis

Teil I Grundlagen und Festlegungen

1	Grundlagen zur Messtechnik und Wellenausbreitung			
	1.1	Absolutpegel und Bezugsgrößen		
	1.2	RMS-	Wert	5
	1.3	Relativ	vpegel	5
	1.4	Signal	überlagerung und Einzelpegel	7
	1.5	Pegel-	Rechenbeispiele	8
		1.5.1	Eingangsspannung für einen HF-Verstärker	9
		1.5.2	Ausgangsleistung eines HF-Verstärkers	9
		1.5.3	Pegelberechnung bei Signalüberlagerung	10
	1.6	Feldst	ärke	10
	1.7	Modu	lation	11
		1.7.1	Amplituden-Modulation	11
		1.7.2	Frequenz-Modulation	11
	1.8	Pegelt	bewertung	14
		1.8.1	Messempfänger – Aufbau und Wirkungsweise	14
		1.8.2	Quasi-Spitzenwert	15
		1.8.3	Mittelwert	16
		1.8.4	CISPR-Mittelwert	16
		1.8.5	Spitzenwert	17
		1.8.6	Gegenüberstellung der Bewertungsfilter	17
		1.8.7	Demodulation im Messempfänger	18
	1.9	Weller	ıfortpflanzung	19
		1.9.1	Nahfeld	20
		1.9.2	Fernfeld	23
		1.9.3	Wellenüberlagerung	24
		1.9.4	Polarisation	24
		1.9.5	Wellenausbreitung auf Leitungen	25
		1.9.6	Wellenreflexion	28

		1.9.7	Angepasste Leitung – Wellenwiderstand	30
		1.9.8	Stehwellenverhältnis	33
		1.9.9	Skin-Effekt	37
		1.9.10	Verkürzungsfaktor	38
	1.10	Kleine	Praxistipps zum Umgang mit Messgeräten	38
		1.10.1	Gebrauch eines Spektrum-Analyzers	39
		1.10.2	Gebrauch eines Oszilloskops	41
		1.10.3	Gebrauch eines Messempfängers	41
		1.10.4	Gebrauch eines Stehwellen-Messgeräts	42
		1.10.5	Überlastung von Messeingängen.	42
	Liter	atur		43
2	Arte	n der S	törfestigkeit	45
	2.1	Schnel	le Transienten (Burst)	45
		2.1.1	Entstehung und Eigenschaften schneller Transienten	46
		2.1.2	Einkopplung schneller Transienten	46
		2.1.3	Auswirkungen schneller Transienten	48
	2.2	Leitun	gsgeführte Störspannung	48
		2.2.1	Entstehung und Eigenschaften von leitungsgeführter	
			Störspannung	48
		2.2.2	Einkopplung leitungsgeführter Störspannungen	49
		2.2.3	Auswirkungen leitungsgeführter Störspannungen	50
	2.3	HF-Stö	örfeld	51
		2.3.1	Entstehung und Eigenschaften des HF-Störfeldes	51
		2.3.2	Einkopplung des HF-Störfeldes	52
		2.3.3	Auswirkungen des HF-Störfeldes	53
	2.4	Elektro	ostatische Entladung (ESD = Electrostatic Discharge)	53
		2.4.1	Entstehung und Eigenschaften von ESD	54
		2.4.2	Einkopplung des ESD	55
		2.4.3	Auswirkungen von ESD	56
	2.5	Stoßsp	annungen und Stoßströme	58
		2.5.1	Entstehung und Eigenschaften des Surge	58
		2.5.2	Einkopplung des Surge	59
		2.5.3	Auswirkungen des Surge	60
	2.6	Nieder	frequente Magnetfelder	60
		2.6.1	Entstehung und Eigenschaften von niederfrequenten	
			Magnetfeldern	61
		2.6.2	Einkopplung von Magnetfeldern	61
		2.6.3	Auswirkungen von Magnetfeldern	63
	2.7	Spann	ungseinbrüche	64
		2.7.1	Entstehung und Eigenschaften von Spannungseinbrüchen	64
		2.7.2	Auswirkungen von Spannungseinbrüchen	65

	2.8	Allgei	neines zur Störeinkopplung	65
		2.8.1	Störeinkopplung über Versorgung	66
		2.8.2	Störeinkopplung durch kapazitive Ableitung	66
		2.8.3	Störeinkopplung über Leitungsfelder	67
	Liter	ratur		67
3	Arte	en der S	Störaussendung	69
	3.1	Leitur	ngsgeführte Störspannung	69
		3.1.1	Entstehung und Eigenschaften von Störspannungen	69
		3.1.2	Auskopplung von Störspannungen	70
	3.2	HF-St	örfeld	70
		3.2.1	Entstehung und Eigenschaften von HF-Feldern	70
		3.2.2	Auskopplung von HF-Feldern	71
	3.3	Eigen	erzeugte Magnetfelder	71
	3.4	Spann	ungsschwankungen – Rückwirkungen ins Netz	74
		3.4.1	Einschaltströme bei Beleuchtungen	75
		3.4.2	Einschaltströme bei induktiven Komponenten	76
		3.4.3	Einschaltströme bei Motoren	77
		3.4.4	Einschaltströme bei Schaltnetzteilen	78
		3.4.5	Wechselbelastung durch Phasenanschnittschaltungen	79
		3.4.6	Wechselbelastung durch Frequenzumrichter	81
	Liter	ratur		81
4	Mes	sungen	zur Prüfung der Störfestigkeit.	83
4	Mes 4.1	sungen Ungüi	zur Prüfung der Störfestigkeit.	83 83
4	Mes 4.1 4.2	sungen Ungüi Messu	zur Prüfung der Störfestigkeit.	83 83 85
4	Mes 4.1 4.2	sungen Ungür Messu 4.2.1	a zur Prüfung der Störfestigkeit nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment	83 83 85 85
4	Mes 4.1 4.2	sungen Ungür Messu 4.2.1 4.2.2	a zur Prüfung der Störfestigkeit nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit	83 83 85 85 85
4	Mes 4.1 4.2	sungen Ungün Messu 4.2.1 4.2.2 4.2.3	zur Prüfung der Störfestigkeit. nstigster Betriebsfall ungen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit	83 83 85 85 85 85
4	Mes 4.1 4.2 4.3	sungen Ungür Messu 4.2.1 4.2.2 4.2.3 Messu	aur Prüfung der Störfestigkeit. nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit	83 83 85 85 85 88 90
4	Mes 4.1 4.2 4.3	sungen Ungün Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1	a zur Prüfung der Störfestigkeit.	83 83 85 85 85 85 88 90 91
4	Mes 4.1 4.2 4.3	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2	a zur Prüfung der Störfestigkeit. hstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit	83 83 85 85 85 88 90 91 92
4	Mes 4.1 4.2 4.3	sungen Ungü Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3	aur Prüfung der Störfestigkeit. nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings	 83 83 85 85 85 88 90 91 92 94
4	Mes 4.1 4.2 4.3	sungen Ungün Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4	azur Prüfung der Störfestigkeit. nstigster Betriebsfall ungen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Burst-Equipment zur Messung der Störspannungsfestigkeit Durchführung der Messung der Störspannungsfestigkeit Durchführung der Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit	 83 83 85 85 88 90 91 92 94 95
4	Mes 4.1 4.2 4.3	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu	azur Prüfung der Störfestigkeit. nstigster Betriebsfall. ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Durchführung der Messung der Störspannungsfestigkeit Durchführung der Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Meitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit Ingen zur Störstromfestigkeit	 83 83 85 85 88 90 91 92 94 95 96
4	Mes 4.1 4.2 4.3 4.4 4.5	sungen Ungün Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu Messu	azur Prüfung der Störfestigkeit. nstigster Betriebsfall. ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Durchführung der Messung der Störspannungsfestigkeit ingen zur Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Durchführung der Messungen zur Störspannungsfestigkeit mgen zur Störstromfestigkeit ungen zur Störstromfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97
4	Mes 4.1 4.2 4.3 4.4 4.5	sungen Ungü Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu Messu 4.5.1	azur Prüfung der Störfestigkeit. nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Burst-Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Burst-Equipment zur Messungen zur Störspannungsfestigkeit Burst-Störfeldfestigkeit Burst-Störfeldfestigkeit Burst-Störfeldfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97
4	Mes 4.1 4.2 4.3 4.4 4.5	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.5.1 4.5.2	azur Prüfung der Störfestigkeit. nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit men zur Störstromfestigkeit Burst-Störfeldfestigkeit Messaufbau zur Störspannungsfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97 97
4	Mes 4.1 4.2 4.3 4.4 4.5	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.3.4 Messu 4.5.1 4.5.2 4.5.3	azur Prüfung der Störfestigkeit. nstigster Betriebsfall. ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit mgen zur Störstromfestigkeit mgen zur Störstromfestigkeit mgen zur Störfeldfestigkeit mgen zur Störfeldfestigkeit Durchführung der Messung der Störfeldfestigkeit mgen zur Störfeldfestigkeit mgen zur Störfeldfestigkeit Durchführung der Messung der Störfeldfestigkeit Durchführung der Messung der Störfeldfestigkeit Durchführung der Messung der Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97 97 101 103
4	Mes 4.1 4.2 4.3 4.4 4.5 4.6	sungen Ungü Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.5.1 4.5.2 4.5.3 G-TE	azur Prüfung der Störfestigkeit nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Durchführung der Messungen zur Störspannungsfestigkeit Messaufbau zur Störspannungsfestigkeit Meitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit Ingen zur Störstromfestigkeit Ingen zur Störfeldfestigkeit Equipment zur Messung der Störfeldfestigkeit Ingen zur Störfeldfestigkeit Durchführung der Messungen zur Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97 97 101 103 104
4	Mes 4.1 4.2 4.3 4.3 4.4 4.5 4.6 4.7	sungen Ungü Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.5.1 4.5.2 4.5.3 G-TEI Messu	aur Prüfung der Störfestigkeit. nstigster Betriebsfall. ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit Ingen zur Störstromfestigkeit Ingen zur Störstromfestigkeit Ingen zur Störfeldfestigkeit Ingen zur Störfeldfestigkeit	83 83 85 85 85 88 90 91 92 94 95 96 97 97 101 103 104 104
4	Mes 4.1 4.2 4.3 4.4 4.5 4.6 4.7	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.5.1 4.5.2 4.5.3 G-TEI Messu 4.7.1	azur Prüfung der Störfestigkeit. nstigster Betriebsfall. ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit Ingen zur Störstromfestigkeit Ingen zur Störfeldfestigkeit Ingen zur Störfeldfestigkeit Durchführung der Messungen zur Störspannungsfestigkeit Ingen zur Störfeldfestigkeit Ingen z	83 83 85 85 85 88 90 91 92 94 95 96 97 97 101 103 104 104
4	Mes 4.1 4.2 4.3 4.4 4.5 4.6 4.7	sungen Ungüi Messu 4.2.1 4.2.2 4.2.3 Messu 4.3.1 4.3.2 4.3.3 4.3.4 Messu 4.5.1 4.5.2 4.5.3 G-TEI Messu 4.7.1 4.7.2	azur Prüfung der Störfestigkeit nstigster Betriebsfall ingen zur Burst-Störfestigkeit Burst-Equipment Messaufbau zur Burst-Störfestigkeit Durchführung der Messungen zur Burst-Störfestigkeit ingen zur Störspannungsfestigkeit Equipment zur Messung der Störspannungsfestigkeit Weitere Anschlüsse und Zusatzgeräte des Prüflings Durchführung der Messungen zur Störspannungsfestigkeit mgen zur Störstromfestigkeit ungen zur Störfeldfestigkeit mgen zur Störfeldfestigkeit Durchführung der Messung der Störfeldfestigkeit mgen zur Störfeldfestigkeit mgen zur Störstromfestigkeit mgen zur Störfeldfestigkeit Equipment zur Messung der Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit mgen zur Störfeldfestigkeit Beruppment zur Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit Messaufbau zur Störfeldfestigkeit Messaufbau zur ESD-Messung Messaufbau zur ESD-Messung	83 83 85 85 88 90 91 92 94 95 96 97 97 101 103 104 104 104

	4.8	Messungen zur Sto	bßspannung	107
		4.8.1 Equipment	zur Surge-Messung	108
		4.8.2 Messaufba	u zur Surge-Messung	108
		4.8.3 Durchführu	ing der Surge-Messungen	109
	4.9	Messungen zu nied	lerfrequenten Magnetfeldern	109
		4.9.1 Equipment	zur Messung mit niederfrequenten Magnetfeldern	109
		4.9.2 Messaufbar	u zur Messung mit niederfrequenten Magnetfeldern	111
		4.9.3 Durchführu	ing der Messung mit niederfrequenten	
		Magnetfeld	lern	111
5	Mes	sungen zur Prüfun	g der Störaussendung	113
	5.1	Messung leitungsg	ebundener Störaussendung	113
		5.1.1 Equipment	für die Messung leitungsgebundener	
		Störaussend	dung	114
		5.1.2 Messaufbar	u zur leitungsgebundenen Störaussendung	115
		5.1.3 Durchführu	ing der Messung zur leitungsgebundenen	
		Störaussen	dung	116
	5.2	Messung HF-Feld		117
		5.2.1 Equipment	zur Messung der Feldabstrahlung	117
		5.2.2 Messaufbar	u zur Feldabstrahlung	117
		5.2.3 Durchführu	ing der Messung zur Feldabstrahlung	118
	Lite	atur		118
6	Mes	sungen im Testhau	s	119
	6.1	Terminplanung und	d Dokumente für den Gang ins Testhaus	119
	6.2	Wahl des Testhaus	es	120
	6.3	Vorbereitungen		121
	6.4	Eigenes Equipmen	t für den Besuch im Testhaus	123
	6.5	Reihenfolge der Te	ests – ein Zeitkriterium	123
	6.6	Interpretation und	Bewertung der Ergebnisse	124
	6.7	Grenzwerte nicht e	eingehalten – was nun?	124
7	Dok	umentation		127
	7.1	Inhalt einer EMV-I	Dokumentation	127
	7.2	Form der Dokumer	ntation	128
	7.3	Konformitätserklän	rung	129
	7.4	Konformitätserklär	rung in englischer Sprache	129
	7.5	EMV-Risikoanalys	e und -bewertung	129
8	Nor	nen und Rechtlich	es	133
	8.1	Auswahl der Norm	1en	133
	8.2	Bewertungskriterie	n	134
		8.2.1 Bewertungs	skriterium A	134
		8.2.2 Bewertungs	skriterium B	135

		8.2.3	Bewertungskriterium C	135
Teil	II	Praxis u	ınd Erfahrungsbasis	
9	Unte	ersuchu	ngen und Verbesserungen zur Störfestigkeit	139
	9.1	Unters	uchungen und Verbesserungen zur Burst-Störfestigkeit 1	139
		9.1.1	Ausbreitung von Burst-Störungen 1	140
		9.1.2	Gegenmaßnahmen bei Burst-Störungen 1	140
		9.1.3	Schaltungskomponenten für die Burst-Störfestigkeit 1	142
	9.2	Unters	uchungen und Verbesserungen zur Störspannungsfestigkeit 1	142
		9.2.1	Maßnahmen zur Verbesserung der Störspannungsfestigkeit 1	143
		9.2.2	Identifizierung der Störwege 1	144
	9.3	Unters	uchungen und Verbesserungen zur Störfeldfestigkeit 1	145
		9.3.1	Maßnahmen zur Verbesserung der Störfeldfestigkeit 1	145
	9.4	Unters	uchungen und Verbesserungen zur ESD-Störfestigkeit 1	147
		9.4.1	Umleiten von ESD	147
		9.4.2	Entschärfen durch Verzögerung von ESD 1	148
	9.5	Unters	uchungen und Verbesserungen zur Stoßspannungsfestigkeit	148
	9.6	Unters	uchungen zu niederfrequenten Magnetfeldern 1	149
	9.7	Fallbei	ispiele	149
		9.7.1	Burst und Funkenbildung 1	149
		9.7.2	Burst und Kondensatorschluss 1	151
		9.7.3	Störspannungsfestigkeit und Leitungsresonanz 1	151
		9.7.4	Störspannungsfestigkeit und unerwünschte Demodulation 1	153
		9.7.5	Störspannungsfestigkeit und schwebende Masse in	
			Datenleitungen 1	155
		9.7.6	Störfeldfestigkeit und nichtkonsistenter Leitungsschirm 1	157
		9.7.7	Störungssymptomatik im unteren Frequenzbereich 1	159
	9.8	Sympt	om-Chart (Differenzialdiagnostik nach Frequenzkriterien) 1	163
10	Unte	ersuchu	ingen und Verbesserungen zur Störaussendung	165
	10.1	Unter	rsuchungen und Verbesserungen zur leitungsgeführten	
		Auss	endung 1	165
	10.2	Unter	rsuchungen und Verbesserungen zur Feldaussendung 1	169
	10.3	Fallb	eispiele 1	169
		10.3.	1 Motorstörung 1	169
		10.3.	2 Störung bei der Gleichrichtung von Wechselspannungen 1	173
		10.3.	3 Leitungsgeführte Störaussendung bei Schaltnetzteilen 1	176
	Liter	atur	1	179
11	Eige	ne Test	s ohne normgerechtes Equipment	181
	11.1	Impro	ovisierter Burst-Test	182
		11.1.	1 Mögliche Burst-Anordnung	182
		11.1.	2 Praxismessungen	183

	11.2	Improvisierter Störspannungstest		185
		11.2.1 Mögliche Anordnung zum Störspannung	gstest	186
		11.2.2 Praxismessungen zum Störspannungstes	st	187
		11.2.3 Störspannungstest mit Eigenbau-Genera	tor	190
	11.3	Improvisierter Störfeldtest		191
		11.3.1 Mögliche Anordnung zum Störfeldtest.		193
		11.3.2 Praxismessungen zum Störfeldtest		193
	11.4	Störspannungs-Emission mit einfachen Mitteln.		194
	11.5	Störfeld-Emission mit einfachen Mitteln		195
	Litera	ratur		195
12	Entw	vicklungsbegleitendes Equipment		197
	12.1	Immunität: Schnelle Transienten		197
	12.2	Immunität: Leitungsgebundene Störspannung		198
	12.3	Immunität: Elektrostatische Entladung (ESD)		199
	12.4	Immunität: Einstrahlung		199
	12.5	Immunität: Stoßspannung/Stoßstrom		202
	12.6	Emission: Störspannung		202
	12.7	Emission: Messempfänger oder Spektrumanalvz	er	204
	12.8	Zusätzliche Hilfsmittel		207
		12.8.1 EMV-Tisch		207
		12.8.2 Holzbrücke		208
		12.8.3 Netzteil und Akkuversorgung		208
		12.8.4 Trenntransformator		209
		12.8.5 Multimeter		209
		12.8.6 Datenlogger ADX-24		210
10	Dert		,	212
13	Desig	gnregein	·····	213
	13.1	Aligemeines zur Anordnung von Schaltungsberei		213
		13.1.1 Anordnung von Versorgungs-, Ein- und	,	
		Ausgangsanschlussen		213
	10.0	13.1.2 Anordnung von Quarzen an Mikrocontr	ollern	214
	13.2	Schutz- und Bypass-Elemente		216
		13.2.1 Gegentakt-Schutz		216
		13.2.2 Gleichtakt-Schutz		219
	13.3	Masseführung	· · · · · · · · · · · · · · · · · · ·	223
		13.3.1 Sternförmige Masse		223
		13.3.2 Masseflächen		226
		13.3.3 Kapazität zwischen Leiterbahnen und K	upferflächen	229
		13.3.4 Stützkondensatoren		230
	13.4	Gehäuse-Anbindung und Erdung		232
		13.4.1 Gehäuseanbindung für Kleinspannung .		232
		13.4.2 Gehäuseanbindung für größere Spannur	igen	
		(Niederspannung)		233

	13.5	Ein- und ausgehende Signalleitungen	. 234
	13.5.1 Hochfrequente Datenleitungen		. 234
		13.5.2 Empfindliche Datenleitungen	. 236
	13.6	Schutz diskreter Halbleiter	. 237
	13.6.1 Schutz von Sperrschicht-Transistoren		. 237
	13.6.2 Schutz von MOS-Transistoren		. 238
		13.6.3 Schutz von Leuchtdioden	. 238
	13.7	Schirmung von Kabeln und Spalten	. 238
		13.7.1 Betrachtungen zur Leitungsabschirmung	. 239
		13.7.2 Materialien zum Abschirmen	. 240
	Litera	atur	. 240
14	Mikr	rocontroller-Steuerungen	. 241
	14.1	Programmablauf und Verhinderung von Abstürzen	. 241
		14.1.1 NOP im Programmcode.	. 241
		14.1.2 Watchdog setzen	. 243
		14.1.3 Grundinitialisierung und Parametrierung	. 244
		14.1.4 Routinen-Überwachung	. 244
		14.1.5 Redundante A/D-Wandlung	245
	14.2	Externe Schaltung	. 246
		14.2.1 Port-Ausgänge	. 246
		14.2.2 Port-Eingänge	. 247
		14.2.3 Reset-Eingang und Interrupts	. 247
	14.3	Programmierbare Flankensteilheit.	. 248
15	Simo	Juanauhaituna	251
15		Stämmassishans Sansamannun aan	. 251
	13.1	15.1.1 Filter Varfahren	. 251
		15.1.1 Fillel-Verfallen	. 252
		15.1.2 Infodulations-vertainen	. 234
		15.1.5 Kauschinpuls-verlählen	. 257
		15.1.5 Swoon Warfahren zur Immunitäte Steigerung	. 257
		15.1.5 Sweep-vertailien zur minumaus-steigerung	. 238
		15.1.0 Synchron-Oleichnehung.	. 239
		15.1.7 Ampinuden-Samping-vertainen.	. 200
	15.2	Vonzonta für Sansoran mit garinger Emission	. 201
	13.2	15.2.1 Sween Methoden	. 202
		15.2.1 Sweep-Methoden	. 202
		15.2.2 Chopper-Methoden	. 204
	15.2	15.2.5 Beglelizungsmethodeli.	. 204
	13.3	15.3.1 Optische Trennung	. 200
		15.3.1 Opuscie freinung	. 207
		15.3.2 Induktive Irennung	. 209
		15.5.5 Akustische Trennung	. 270

15.3.4 Trennung durch HF-Übertragung	272
15.3.5 Trennung der Versorgung	273
Literatur	274
Anhang	275
Glossar	315
Stichwortverzeichnis.	321

Teil I

Grundlagen und Festlegungen

Grundlagen zur Messtechnik und Wellenausbreitung

Zusammenfassung

Im EMV-Bereich gehört Messtechnik zum unverzichtbaren Werkzeug bei der Arbeit mit den zu untersuchenden Geräten oder Komponenten. Ein Schwerpunkt bildet dabei das Messen und Bewerten von Pegeln. Deshalb liegt dort auch das Augenmerk bei den nachfolgenden Ausführungen. Gemeinsam mit den theoretischen Festlegungen sind ein paar Beispielrechnungen eine Einführung in die praktische Messtechnik.

Die Wellenausbreitung ist ein weiterer grundlegender Bereich. Alle theoretischen Grundlagen können wir hier jedoch nicht darlegen, lediglich solche zum Verständnis der Zusammenhänge im EMV-Bereich. Gerade für Einstrahlung und Abstrahlung sind Strukturen vorausgesetzt, die die Ursachen in einem klareren Licht erscheinen lassen können.

Da es in diesem Kapitel um allgemeine Fragen der Messung geht, ist ein kleiner Bereich dem Umgang mit Messmitteln gewidmet. Hier im Grundlagenkapitel sind diese Hilfestellungen ganz gut platziert, denn sie bilden das Bindeglied zu den Detailmessungen in den folgenden Kapiteln, die durch Handhabungstipps nicht allzu sehr gestört werden sollten.

1.1 Absolutpegel und Bezugsgrößen

Pegel sind Angaben zur Stärke eines Signals. Genauer gesagt, wird beim Pegel der Logarithmus eines Verhältnisses gebildet, welches sich aus der auszudrückenden Größe A zu einer Bezugsgröße A_0 ergibt. Da der Zehnerlogarithmus selbst keine Einheit hat, hat man zur Kennzeichnung des Pegelmaßes dennoch eine Pseudoeinheit angefügt, nämlich das *Bel*. Dies ist historisch bedingt und bezieht sich auf *A*. *G. Bell*.

1

[©] Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2021 D. Stotz, *Elektromagnetische Verträglichkeit in der Praxis*, https://doi.org/10.1007/978-3-662-62221-6_1

$$a = \log \frac{A}{A_0} \tag{1.1}$$

Anfänglich waren bei jeglichen Pegelberechnungen hauptsächlich Leistungen beteiligt. Wenn die Bezugsgröße beispielsweise $P_0 = 1$ mW ist, so hätte die Leistung P von 2 W folgenden Pegel in Bel:

$$\log \frac{P}{P_0} = \log \frac{2 \text{ W}}{1 \text{ mW}} \approx 3.3 \text{ B(el)}$$
(1.2)

Da die Zahlenwerte für diese Rechnung etwas unhandlich schienen, entschied man sich dafür, mit dem zehnten Teil, dem *Dezibel*, zu rechnen. Für das obige Zahlenbeispiel ergibt sich dann:

$$10 \cdot \log \frac{P}{P_0} = 10 \cdot \log \frac{2 \text{ W}}{1 \text{ mW}} \approx 33 \text{ dBm}$$
(1.3)

Das **m** in der Einheit **dBm** deutet darauf hin, dass die Bezugsgröße 1 mW ist. Neben der Leistung gibt es noch viele weitere Bezugsgrößen in der Elektrotechnik und Elektronik, nämlich Spannung und Strom. Um nun bei einer definierten Last von der Leistung auf die Spannung bzw. auf den Strom zu schließen, sind folgende Umrechnungsgleichungen erforderlich:

$$P = \frac{U^2}{R} = I^2 \cdot R \tag{1.4}$$

Setzt man den Term mit dem Spannungsquadrat von Gl. 1.4 in Gl. 1.3 ein, so ergibt sich:

$$10 \cdot \log \frac{\frac{U^2}{R}}{\frac{U_0^2}{R}} = 20 \cdot \log \frac{U}{U_0}$$
(1.5)

Der Exponent 2 bewirkt die Verdopplung des Logarithmus', aus der 10 wird die 20 als vorangestellter Faktor. Die Größe des Lastwiderstands fällt heraus, solange dieser beim Schritt von Leistungspegel nach Spannungspegel konstant bleibt.

Faktor 10 bedeutet für Spannungen und Ströme 20 dB, für Leistungen jedoch nur 10 dB. In Tab. 1.1 sind einige spezielle Werte dargestellt.

Für ein und dieselbe Situation – genauer gesagt für dieselbe Last (R) – ist es gleichgültig, ob man zur Berechnung des Pegels die Leistungswerte oder die Spannungswerte heranzieht. Lediglich bei Leistungspegeln beträgt der Skalierungsfaktor **10**, bei einfachen Größen wie Strom und Spannung beträgt er **20**, damit die Pegelmaße übereinstimmen.

Wert	Bezugsgröße	Bedingungen	Pegel
0,775 V	1 mW	Lastimpedanz 600 Q	0 dBm
1 µV	1 mW	Lastimpedanz 50 Q	-107 dBm
0,775 V	1 V	keine def. Last	-2,2 dBu
0,224 V	1 mW	Lastimpedanz 50 Q	0 dBm
0,224 V	1 μV	Lastimpedanz 50 Ω	107 dBµV

Tab. 1.1 Spezielle Pegelwerte

Speziell in der EMV-Technik sind Pegelangaben vornehmlich für Feldstärken wichtig. Dabei unterscheidet man zwischen elektrischer *E* und magnetischer Feldstärke *H*. Bezugsgrößen sind hierbei μ V/m und μ A/m. Also:

E - Feld - Pegel:
$$a_E = 20 \cdot \log \frac{E}{E_0} = 20 \cdot \log \frac{E}{1 \,\mu \text{V} / \text{m}} \left[\text{dB} \frac{\mu \text{V}}{\text{m}} \right]$$
 (1.6)

H - Feld - Pegel:
$$a_H = 20 \cdot \log \frac{H}{H_0} = 20 \cdot \log \frac{H}{1 \,\mu\text{A} \,/\,\text{m}} \left[\text{dB} \frac{\mu\text{A}}{\text{m}} \right]$$
(1.7)

1.2 RMS-Wert

Der RMS-Wert (RMS = \mathbf{R} oot Mean Square) einer Wechselspannung (auch Effektivwert genannt) entspricht derjenigen Gleichspannung, die an einem ohmschen Verbraucher dieselbe Leistung umsetzen würde wie im zeitlichen Mittel die Wechselspannung.

Somit ergibt sich der RMS-Wert aus der Wurzel des zeitlichen Mittels des Spannungsquadrates. Man betrachte hierzu Abb. 1.1.

Natürlich gibt es für Wechselströme oder Felder ebenfalls Effektivwerte. In Abschn. 1.8 weiter unten werden wir sehen, dass der Effektivwert zwar als Bewertung eines Störsignals wenig Bedeutung hat, allerdings beziehen sich alle Bewertungsarten auf diesen.

1.3 Relativpegel

Bei den im letzten Abschnitt erwähnten Absolutpegeln gibt es stets eine Bezugsgröße mit definiertem Wert. Stellt man dagegen zwei unabhängige Werte gegenüber, so ergibt sich ein relatives Pegelmaß dieser beiden zueinander. In diesem Falle steht nach der Pseudoeinheit dB keine weitere Deklaration. Beispielsweise sei vor einem Verstärker eine Spannung von $U_1 = 1$ V gemessen, am Verstärkerausgang seien $U_2 = 10$ V vorhanden. Damit ergibt sich analog zu Gl. 1.5:

$$a_U = 20 \cdot \log \frac{U_2}{U_1} = 20 \cdot \log \frac{10V}{1V} = 20 \text{ dB}$$
 (1.8)

Abb. 1.1 Zur Herleitung des RMS-Wertes. Er ist abgeleitet vom mittleren Leistungsumsatz, also ist aus dem Signalverlauf (hier Sinus) zunächst die Leistungskurve zu bilden. Bei rein ohmschen Verbrauchern ist diese komplett im Positiven, also auch der Verlauf des Spannungsquadrates, welches ja bei U_2/R die einzige Veränderliche ist. Die normierte Darstellung bewirkt bei beiden Sinuskurven die Position des Maximalwertes bei 1. Der Mittelwert des Spannungsquadrates liegt bei 1/2. Die Wurzel daraus liefert somit die normierte Effektivspannung $1/\sqrt{2}$. Nicht zu verwechseln ist dieser Wert mit dem arithmetischen Mittel des Gleichrichtwerts, der nämlich bei $2/\pi$ liegt

Dieser Wert entspricht der Verstärkung von U_2 gegenüber U_1 . Das auf Leistung bezogene *Verstärkungsmaß* beträgt ebenfalls 20 dB (damit das so ist, gibt es die beiden verschiedenen Skalierfaktoren 10 und 20 – siehe oben).

Dagegen ist das Dämpfungsmaß der Spannung U_2 gegenüber U_1 :

$$a_U = 20 \cdot \log \frac{U_1}{U_2} = -20 \cdot \log \frac{U_2}{U_1}$$
(1.9)

Die Betrachtung des Dämpfungsmaßes gegenüber dem Verstärkungsmaß und umgekehrt bedeutet verständlicherweise stets eine Negation der dB-Werte.

Der Vorteil, mit Pegeln anstatt mit Spannungen oder Leistungen zu rechnen, liegt klar auf der Hand: Die Werte sind durch einfache Addition bzw. Subtraktion miteinander zu verrechnen, denn es handelt sich ja Logarithmen, also um Exponenten zur einheitlichen Basis 10. Viele Komponenten in einer Kette sind meist mit logarithmischen Werten für Verstärkung oder Abschwächung spezifiziert, sodass eine schnelle und einfache Berechnung von resultierenden Pegeln möglich ist.

1.4 Signalüberlagerung und Einzelpegel

Überlagern sich mehrere Signale wie in Abb. 1.2, so addieren sich deren Einzelleistungen zur Gesamtleistung. Eine Rückrechnung auf Pegel muss stets über die Kenntnis der Einzelleistungen erfolgen:

$$\boldsymbol{P}_{\text{ges}} = \boldsymbol{P}_1 + \boldsymbol{P}_2 \tag{1.10}$$

Oftmals sind Gesamtleistung und eine der Einzelleistungen (z. B. P_1) über deren Pegel messbar, dann ergibt sich:

$$P_{\text{ges}} = 1 \text{ mW} \cdot 10^{\frac{\omega_{\text{ges}}}{10}}$$
(1.11)
$$P_{\text{i}} = 1 \text{ mW} \cdot 10^{\frac{\alpha_{\text{i}}}{10}}$$

Nach Gl. 1.10 ergibt sich für P_2 :

$$P_2 = P_{\rm ges} - P_1 \tag{1.12}$$

Und dann für den gesuchten Pegel a_2 :

$$a_2 = 10 \cdot \log \frac{P_2}{1 \text{ mW}} \tag{1.13}$$

Bei einem Spektrogramm kann für *Rauschsignale* nicht angegeben werden, wie hoch der Pegel innerhalb eines bestimmten Frequenzintervalls ist. Hierzu muss der Analyzer eine Berechnung anstellen und den RMS-Wert oder -Pegel als Zahlenwert ausgeben. Die

Abb. 1.2 Rauschsignal und herausragender Peak. Je nachdem, wie weit der Peak aus dem Hintergrundrauschen herausragt, ist seine Spannung genau bestimmbar

Abb. 1.3 Rauschteppich und Tonsignal. Beide Signale ergeben für sich gesehen dieselbe Spannung, obwohl der Rauschteppich im Spektrogramm wesentlich niedriger liegt. Nach Gl. 1.15 haben die Spannungen ein Verhältnis von 64:1 zueinander, die Pegel sollten ca. 36 dB auseinanderliegen. Die tatsächlichen Anzeigen hängen jedoch noch etwas vom *Bewertungsfenster* sowie vom *Crest-Faktor* des Rauschens ab

sich ergebende Spannung u_r eines Rauschsignals ist mit D_r als *Rauschspannungsdichte* und *Bandbreite B*:

$$u_{\rm r} = D_{\rm r} \cdot \sqrt{B} \tag{1.14}$$

Auf welchem Niveau sich der Rauschpegel bei einem Spektrogramm bewegt, lässt sich nicht vorhersagen, denn dies hängt von den genannten Werten der Rauschspannungsdichte und der Bandbreite ab. Wir werden weiter unten bei der Beschreibung des Messempfängers sehen, dass die Bandbreite durch diesen bzw. durch die Normen definiert ist. Auch bei einem Spektrumanalyzer ist die Bandbreite wählbar. Durch Ablesen des Rauschniveaus und bekannter Bandbreite lässt sich die Rauschspannungsdichte ermitteln. Siehe auch Abb. 1.3.

Bei digitalen Systemen, bei denen keine feste Bandbreite vorgegeben ist, sondern die bei der FFT (Fast Fourier Transformation) eine Strichzahl q aufweisen (meist Zweierpotenz), kann für das Spannungsniveau u_{hor} des Rauschteppichs geschrieben werden:

$$u_{\rm hor} = D_{\rm r} \cdot \sqrt{\frac{B}{q}}$$
 und $u_{\rm r} = u_{\rm hor} \cdot \sqrt{q}$ (1.15)

Sind also Strichzahl q und Bandbreite B des Spektrums bekannt, so lässt sich aus der Höhe des abgelesenen Spannungsniveaus u_{hor} die Rauschspannungsdichte D_r errechnen. Ferner lässt sich die tatsächliche Rauschspannung u_r aus Strichzahl q und abgelesenem Niveau u_{hor} bestimmen.

1.5 Pegel-Rechenbeispiele

Ein paar Berechnungen aus der Praxis sollen hier helfen, gängige Situationen an Messaufgaben zu bewältigen.

1.5.1 Eingangsspannung für einen HF-Verstärker

Ein HF-Verstärker sei mit einer Verstärkung von +29 dB angegeben. Außerdem sei der Maximalpegel am Ausgang +30 dBm. Wir benötigen für eine Messaufgabe eine Spannung von 5 V an einer Impedanz von 50 Ω .

Wir können die Spannung für 0 dBm an 50 Ω nach Gl. 1.4 ausrechnen oder aber aus Tab. 1.1 entnehmen. Dies entspricht dem Pegel von 0 dBm. Der zulässige Pegel am Verstärkerausgang liegt laut Angabe um 30 dB höher. Um daraus die Maximalspannung zu ermitteln, benötigt man die Umkehrgleichung zu Gl. 1.8:

$$\frac{U_{\text{max}}}{0,224 \text{ V}} = 10^{\frac{30}{20}} \Rightarrow U_{\text{max}} = 0,224 \text{ V} \cdot 31,6 = 7,08 \text{ V}$$
(1.16)

Das bedeutet, der Verstärker ist noch in der Lage, ohne Beschädigung die geforderten 5 V zu liefern. Jetzt kann die erforderliche Eingangsspannung ermittelt werden:

$$\frac{5 \text{ V}}{U_{\text{in}}} = 10^{\frac{29}{20}} \Rightarrow U_{\text{in}} = \frac{5 \text{ V}}{28,2} = 0,177 \text{ V}$$
(1.17)

Wenn ausgangsseitig Effektivspannung gemeint ist, muss für die Eingangsspannung dasselbe gelten.

Es ist erwähnenswert, dass bei Amplituden-Modulation die mittlere Leistung ansteigt. Weiter unten werden wir sehen, wie sich die Spannung unter Modulation verändern muss. Außerdem ist bezüglich der Belastung des Verstärkers zu bedenken, dass die maximale Dauerleistung meist unter der Maximalleistung liegt. Bei Messaufbauten kommt dieses Problem noch zur Sprache.

1.5.2 Ausgangsleistung eines HF-Verstärkers

Nehmen wir das Beispiel von oben, so lässt sich die Verstärkerausgangsleistung einfach berechnen:

30 dBm =
$$10 \cdot \log \frac{P_{\text{max}}}{1 \text{ mW}} \Rightarrow P_{\text{max}} = 1 \text{ mW} \cdot 10^{\frac{30}{10}} = 1 \text{ W}$$
 (1.18)

Die tatsächliche Leistung ist über die gegebenen Werte von 5 V und 50 Ω einfach zu berechnen (siehe Gl. 1.4):

$$P = \frac{(5 \text{ V})^2}{50 \Omega} = 0,5 \text{ W}$$
(1.19)

Wie gefordert liegt Wert unter dem maximalen.

1.5.3 Pegelberechnung bei Signalüberlagerung

Bei relativ kleinen Nutzsignalen, die sich nur wenig vom Rauschpegel des Messgeräts herausheben, spiegelt der nach Abb. 1.2 dargestellte Peak nicht genau den Pegel des zu untersuchenden Signals wider, sondern einen etwas höheren Pegel.

Ein Messempfänger registriert ein verrauschtes Signal mit der Pegelhöhe von -78 dBm, während das Niveau des Rauschens ohne Eingangssignal bei -85 dBm liegt (Eingang abgeschlossen mit 50 Ω). Daraus ergeben sich folgende Leistungen (lt. Gl. 1.11):

$$P_{\text{ges}} = 1 \text{ mW} \cdot 10^{\frac{-78}{10}} = 15, 8 \cdot 10^{-12} \text{ W}$$

$$P_{1} = 1 \text{ mW} \cdot 10^{\frac{-85}{10}} = 3, 16 \cdot 10^{-12} \text{ W}$$
(1.20)

Nach Gl. 1.12 ergibt sich eine Leistung für das zu bestimmende Signal zu:

$$P_2 = P_{\text{ges}} - P_1 = (15,8-3,16) \cdot 10^{-12} \,\text{W} = 12,64 \cdot 10^{-12} \,\text{W}$$
(1.21)

Und damit der Pegel:

$$a_2 = 10 \cdot \log 12,64 \cdot 10^{-9} = -79 \text{ dBm}$$
(1.22)

Der ermittelte Pegel ist somit immerhin um ca. 1 dB geringer als das abgelesene Niveau am Peak. Ein Spektrumanalyzer würde übrigens die Leistung eines Peak genauer anzeigen, weil das Rauschen normalerweise breitbandig ist und somit im Bereich des Peak nur wenig Leistung produziert. Allerdings ist diese Methode nur für sehr schmalbandige Messsignale geeignet, andernfalls ist der Pegel nicht ablesbar. Wir werden aber bei den praktischen Messungen noch genauer darauf zu sprechen kommen.

1.6 Feldstärke

Sowohl für die Störemission als auch für die Immunität ist die Größe der *Feldstärke* von entscheidender Bedeutung. Die Feldstärke *E* verhält sich dabei wie die zeitliche Abhängigkeit der Sinusfunktion der Spannung, die zwischen zwei Punkten im Raum mit dem Abstand *d*:

$$E = \frac{U_0}{d} \cdot \sin(\omega t) \tag{1.23}$$

Da sich die Distanz *d* im Raum befindet, ist die Feldstärke natürlich auch als Raumvektor darstellbar, was für spätere Betrachtungen noch in Kap. 9 behandelt wird.

Die elektrischen Feldvektoren sind in Begleitung mit magnetischen, wobei diese senkrecht auf den ersteren und senkrecht zur Ausbreitungsrichtung der Wellen stehen.

1.7 Modulation

Während Modulation in der Nachrichtentechnik essenziell wichtig ist, um Informationen zu übertragen, spielt sie in der EMV-Technik hauptsächlich die Rolle der Authentizität einer Störumgebung. Manche Schaltungen von Prüflingen demodulieren ein Signal, sodass die Nachfolgeschaltung mit dem Modulationssignal zurechtkommen muss. Mit konstantem Träger wäre die Störunterdrückung einfach mit kapazitiver Entkopplung möglich.

Während ein unmodulierter Träger im Frequenzbereich nur einen diskreten Strich im Spektrum ausmacht, wird jegliche Art von Modulation eine Verbreiterung der Geometrie zur Folge haben.

1.7.1 Amplituden-Modulation

Viele Geräteschaltungen bilden unabsichtlich einfache Hüllkurvendemodulatoren an, also im Grunde genommen Gleichrichter plus Glättung, denn eine einfache BE-Strecke eines Transistors bildet bereits den Gleichrichter. Aber auch Operationsverstärker werden auf Hochfrequenzspannungen gleichrichtend reagieren. Bei Immunitätsprüfungen mittels schmalbandiger Einstrahlung wird die Spannung bzw. das Feld deshalb mit einer Amplituden-Modulation versehen. Die Modulationsfrequenz f_m ist hierbei 1 kHz, die Modulationstiefe 80 %, siehe Abb. 1.4.

Rein rechnerisch ergibt sich für eine amplitudenmodulierte Spannung mit der Amplitude des Trägers U_0 , der Modulationstiefe k, der Trägerfrequenz f_0 und der Modulationsfrequenz f_m :

$$u = \left[1 + k \cdot \sin\left(2\pi f_{\rm m}t\right)\right] \cdot U_0 \cdot \sin\left(2\pi f_0t\right) \tag{1.24}$$

Das Ziel der Modulation ist nicht etwa, etwas breitbandiger zu werden, sondern dem zu testenden Gerät (Device under Test = DUT) eine Störung anzubieten, die durch Demodulation besonders wirksam wird. Wie bereits erwähnt, bilden viele Schaltungsbereiche ungewollt Demodulatoren. Wir kommen in Kap. 9 noch näher darauf zu sprechen. In der Praxis sind die Störer ebenfalls meist nicht mit konstanter Amplitude.

Bei EMV-Messungen ist man übereingekommen, mit einer AM mit 80 % Modulationsgrad und einer Modulationsfrequenz von 1 kHz zu arbeiten.

1.7.2 Frequenz-Modulation

Obwohl bei EMV-Messungen eigentlich Frequenz-Modulation (FM) nicht vorkommt, ist sie dennoch zu erwähnen, denn spezielle Störer arbeiten mit FM, und auch Geräte für Datenübertragung sind bei Verwendung dieser Modulationsmethode besser gefeit gegenüber "normalen" Störsignalen. Siehe hierzu auch Abschn. 9.3.

Abb. 1.4 Amplitudenmoduliertes Signal mit einem Modulationsgrad von 0,8, Zeitbereich und Frequenzbereich. Es zeigen sich drei Peaks, nämlich der der Trägerfrequenz und die der beiden Seitenfrequenzen, die durch Addition und Subtraktion der Modulationsfrequenz f_m bezüglich der Trägerfrequenz f_0 entstehen. Bei einem Modulationsgrad von 1,0 sind die Seitenschwingungen halb so groß wie die Trägerschwingung

Ein FM-Signal sei in Abb. 1.5 dargestellt. Vereinfacht gesprochen unterliegt eine Trägerfrequenz einer Größe, die mit der Elongation des modulierenden Signals proportional zusammenhängt. Mathematisch spiegelt sich die Zeitfunktion einer FM so wider:

$$u_{\rm FM} = U_0 \cdot \cos \left[2\pi f_0 t + \frac{\Delta f_0}{\frac{f_m}{k}} \cdot \sin \left(2\pi f_m t \right) \right]$$
 1.25)

Abb. 1.5 Frequenzmoduliertes Signal im Zeitbereich. Je nach Modulationsindex kann das Spektrum so entarten, dass der Träger gänzlich verschwindet. Dargestellt sind zwei unterschiedliche Verhältnisse von Trägerfrequenz zu Modulationsfrequenz, aber bei konstant gehaltenem Modulationsindex

Darin sind U_0 die Amplitude des Trägers, k der Modulationsindex, f_0 die Trägerfrequenz und f_m die Modulationsfrequenz.

Der Modulationsindex k ist das Verhältnis aus maximalem Frequenzhub des Trägers und der Frequenz des Modulationssignals. Ist die Amplitude des Modulationssignals konstant und variiert die Frequenz, so ändert sich auch der Modulationsindex.

Auch bei dieser Modulationsart verteilt sich die Leistung auf eine größere Bandbreite, was u. U. dazu führt, dass nachher bei der Messung der Störemission ein zeitlich bewerteter Pegel geringer ausfällt als ohne Modulation.