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Preface

Machines of all kinds are used in nearly every aspect of our daily lives from the
vacuum cleaner and washing machine we use at home to the industrial machinery
used to manufacture nearly every product we use on a daily basis. On other hand,
the research development on nonlinear dynamics, nowadays, continuously reveals
that nonlinear phenomena can bring many amazing and advantageous effects in
every practical machinery engineering problem, such as vibration control, energy
harvesting, structure healthmonitoring,micro/nano-electro-mechanical systems, and
so on. Recent trends in machinery vibration and technology including nonlinear
systems and phenomena (cases studies) are the main strength of this book of interest
to both researchers and practicing engineers.

Following the scientific tradition of the conference VETOMAC, its 15th edition is
internationally recognized as a central forum for discussing scientific achievements
and is intended to provide a widely selected forum among scientists and engineers
to exchange methods, techniques, and ideas related to Vibration Engineering and
Technology of Machinery problems

So, this book presents the most significant contributions to the VETOMAC 2019
Conference held in Hotel Nacional Inn, Curitiba, Paraná, Brazil from November 10
to 15, 2019, covering a range of Vibration Engineering and Technology ofMachinery
problems to provide insights into recent trends and advances in a broad variety of
fields in dynamics and control.

VETOMAC 2019 was promoted by The Vibration Institute of India through its
International Steering of JVET (Journal of Vibration Engineering & Technologies)
and Local Committees at Curitiba, Brazil.

All the papers gathered herewill be of interest to all researchers, graduate students,
and engineering professionals working in the fields of Vibration Engineering and
Technology of Machinery problems and related areas around the globe.

It should be emphasized that all the chapters have been reviewed by two inde-
pendent referrers and authors are responsible for their opinions expressed in their
work.

This book comprises 29 contributions from different countries.
Themain keywords are vibration engineering, technology ofmachinery problems,

nonlinear phenomena, and control design.

v
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The chapters will be subdivided into four main areas:

• Concepts and methods in dynamics, containing seven sub-chapters,
• Dynamics of mechanical and structural system, containing five sub-chapters,
• Dynamics and control containing seven sub-chapters, and
• Recent and emergent trends in dynamics and control containing ten sub-chapters.

I would like to thank the authors, presenters, and session chairs for their participa-
tion. Special gratitude must be extended to several individuals whose invaluable help
enabled the organization of the VETOMAC XV 2019 Conference in Hotel Nacional
Inn, Curitiba, Paraná, Brazil.

Sincere gratitude is also expressed to the Steering Committee:
Prof. Jammi Srinivasa Rao—India (in memorium), Prof. Jose Manoel Balthazar—
Brazil, Prof. Chee Wah Lim—China, Prof. Jyoti K. Sinha—UK, Prof. C Nataraj—
USA, Prof. Romuald Rządkowski—Poland, Prof. Ronald L. Eshleman—USA;

to the Scientific Committee:
Prof. Mohamed Belhaq—Morroco, Prof. Giuseppe Rega—Italy, Prof. Livija
Cvetićanin—Serbia, Prof. José A. Tenreiro Machado—Portugal, Prof. Ferdinand
Verhulst—The Netherlands, Prof. Oded Gottlieb—Israel, Prof. Marcelo José Santos
de Lemos—Brazil, Prof. Dumitru I. Caruntu—USA, Prof. Dr. Mariano Febbo—
Argentina, Prof. Walter Lacarbonara—Italy, Prof. Elżbieta Jarzębowska—Poland;
and

to the Local Committee:
Prof. Dr. Jose Manoel Balthazar—Chair, Prof. Dr. Angelo Marcelo Tusset—Vice
Chair, Prof. Dr. Giane Gonçalves Lenzi, Prof. Dr. Mauricio Aparecido Ribeiro, Prof.
Dr. Dailhiane Grabowski Bassinello, Engg. Wagner Barth Lenz, Prof. Dr. Edson
Hideki Koroishi, Prof. Dr. Atila Madureira Bueno, Prof. Dr. Suelia De Siqueira
Rodrigues Fleury Rosa, Prof. Dr. Américo Barbosa Cunha Junior, Prof. Dr. Airton
Nabarrete, Prof. Dr. Silvio Luiz Thomaz de Souza, Eng. Civil. Giovanna Gonçalves,
Prof. Dr. Eduardo Marcio de Oliveira Lopes, Prof. Dr. Carlos Alberto Bavastri, and
all reviewers.

I would like to give a special thanks to Ms. Nathalie Jacobs for her help and
encouragements to the publication of this volume.

Finally, the history of VETOMAC Series of Conferences (in collaboration with the
Vibration Institute of India) can be summarized as follows:

• VETOMAC I, 2000: Indian Institute of Science, Bangalore, India;
• VETOMAC II, 2002: Bhabha Atomic Research Centre, Mumbai, India;
• VETOMAC III, 2004: Indian Institute of Technology, Kanpur, India;
• VETOMAC IV, 2007: University College of Engineering, Osmania University,

Hyderabad, India, Bharat Heavy Electricals Limited, Hyderabad, India;
• VETOMAC V, 2009: Huazhong University of Science and Technology, Wuhan,

China and City University of Hong Kong, China;
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• VETOMAC VI, 2010: Indian Institute of Technology, New Delhi, India,
VETOMAC VII, 2011: Shanghai Jiao Tong University and City University of
Hong Kong, China, VETOMAC VIII, 2012: Institute of Fluid Flow Machinery,
Polish Academy of Sciences, Gdansk, Poland;

• VETOMAC IX, 2013: Nanjing University of Aeronautics and Astronautics,
Nanjing, China;

• VETOMAC X, 2014. University of Manchester, UK, VETOMAC XI. 2015,
National Kaohsiung First University of Science and Technology, Kaohsiung,
Taiwan;

• VETOMAC XII, 2016, Organized by Institute of Fluid Flow Machinery, Polish
Academy of Sciences, Gdansk and Air Force Institute of Technology, Warsaw,
Poland;

• VETOMAC XIII, 2017, Organization 12th World Congress on Engineering
ASSETManagement and 13th InternationalConference onVibrationEngineering
and Technology of Machinery Brisbane, Queensland, Australia;

• VETOMAC XIV, 2018, organized by Faculdade de Ciências e Tecnologia
of Universidade Nova de Lisboa (DEC/FCT/UNL) and IDMEC—Institute of
Engineering Mechanics of Instituto Superior Técnico of University of Lisbon
(IDMEC/IST/UL); and

• VETOMACXV, 2019, organized byUniversidadeTecnológica Federal doParaná,
Câmpus Ponta Grossa, Paraná/Brazil.

Curitiba, PR, Brazil Prof. José Manoel Balthazar
UNESP-Universidade Estadual Paulista

Bauru, SP, Brazil

UTFPR-Universidade Tecnológica Federal do Paraná
Ponta Grossa, PR, Brazil
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Stabilization of Chaos Via Strong
Nonlinearities: The Lorenz-Malkus
Wheel Under Coulomb and Hystersis
Frictions

Mikhail E. Semenov, Evgeny A. Karpov, Sergey G. Tikhomirov,
Peter A. Meleshenko, and Margarita Teplyakova

Abstract In this chapter we consider the modified Lorenz-Malkus water wheel
model. Within a novel approach we take into account friction features on the rim of
the water wheel formalized by strong nonlinearities. Namely, the dry friction (within
the Coulomb model) and hysteresis friction (within the Bouc-Wen model and the
Dahl model) are considered. The dynamic characteristics such as fixed points, Lya-
punov characteristic exponents, bifurcation diagrams, are presented and discussed.
Detailed analysis of a 2-dimensional Lorenz-Malkus system (where the third coor-
dinate is supposed to be constant) is also presented and discussed. Namely we show
the bifurcation process where two saddles and stable node birth from a saddle. It
is shown that the static friction (formalized within the Coulomb model) leads to
stabilization of the system at the origin independent on the value of the friction coef-

This chapter is an extension of the work “Chaos vs Hysteresis: water wheel under dry friction”
presented on VETOMAC-2019, Curitiba, Brazil.
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ficient. At the same time we show that using certain parameters within the Bouc-Wen
and Dahl models, chaotic behaviour can be controlled. A way to use the modified
Lorenz-Malkus system with certain parameters as a “natural” pseudo-random num-
bers generator is also discussed.

Keywords Chaos · Lorenz system · Coulomb friction · Hysteresis · Bouc-wen
model · Dahl model · Lyapunov characteristic exponents · Bifurcation diagrams

1 Introduction

1.1 The Lorenz System

In 1963American researcher EdwardLorenz engagedwithweather forecasting prob-
lems and published famous paper 3 [1] “Deterministic Nonperiodic Flow” in the
Journal of the Atmospheric Sciences where he showed that relatively simple system
of three ordinary differential equations (which is well-known now as the “Lorenz
system”), which was obtained during the analysis of the convection process in a
fluid layer, demonstrated unexpected behaviour. This research was a starting point
for such a modern field as the chaos theory.

The Lorenz system ⎧
⎨

⎩

ẋ = σ(y − x),
ẏ = x(r − z) − y,
ż = xy − bz,

(1)

includes variables x , y and z that have the following sense (in terms of the convection
problem):

• x is proportional to the rate of convection;
• y is proportional to the horizontal temperature variation;
• z is proportional to the vertical temperature variation.

Parameters σ , r and b are proportional to the Prandtl number, the Rayleigh number,
and the coefficient corresponding to the geometry of the convective region, respec-
tively.

During numerical simulations, Lorenz obtained some unexpected feature of sys-
tem (1). Such a feature plays a special role in the following investigation of the
system and reflects the high sensitivity of the solution to small deviations of initial
conditions. Using the standard iterative procedure it was shown that the sensitivity
to small deviations of initial conditions leads to the divergence of the initially close
solutions. In our days this feature1 is called the dependence of the solution on the
initial conditions (Fig. 1).

1Note, that it can be served as a main sign of the chaotic behaviour.
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Fig. 1 A solution to
system (1). Dependence of
variable x on the time for
two systems with close
initial conditions: initial
condition for red curve is
(2.01,−2, 2) and for blue
curve is (2,−2, 2)

Formany years researchers detected chaotic behavior in different physical models
such as lasers [2], dissipative oscillator with inertial excitation [3], chemical reac-
tions [4], and others.Models of these systems can be described in terms of the Lorenz
system (1). Recent works [5, 6] are dedicated to modifications of the Lorenz system
where ordinary derivativeswere replaced by fractional derivatives (the so-called frac-
tional Lorenz system). Particularly, in [5] athors reported a new algorithm of calculus
for fractional derivatives, moreover they obtained that chaos in the fractional-order
system exists with order lower than 2.97. Novel results in chaos control and system
synchronization together with the corresponding analytical results were presented
and disccused in [6], where the Malkus water wheel model (which is also described
by the Lorenz system) was considered in terms of the fractional calculus. Attracting
regions of the Lorenz system are also important charcteristics of chaotic systems and
have to be examined in details as was done in [9]. Particularly, authors investigated
the form of attractors and their behavior by expanding the space R into space C.
Results of [9] are proved that the obtained attractors are not chaotic. Another impor-
tant chracteristics within the nonlinear dynamics are the so-called homoclinic orbits.
In [7, 8] the main objects for analysis are homoclinic orbits of the Lorenz system as
well as their construction.

One of themajor questions in the chaos theory (fromboth fundamental and applied
points of view) is chaos control. Nowadays, a wide range of techniques to reduce
chaos has invented. Firstly, let us note a well-known method to control chaos which
is based on feedback principles. For example, in [13] authors investigated changes in
dynamics of the Lorentz system under feedback control. Particularly, it was shown
that the trajectory of the Lorenz system is located at one stable point. In [11], the
global attracting set of the simplified Lorenz model was investigated within the
Lyapunov stability theory. It was shown that themethod of constructing the Lyapunov
function applied to classical systems with chaos, does not work for a simplified
model of the Lorenz system. In [12], the dynamics of unidirectionally connected
chaotic Lorenz systems were investigated. It was shown that chaos is observed in the
system independently on the generalized synchronization. To demonstrate the lack
of synchronization, the Lyapunov exponents were used. In some cases, this result
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can be applied in the field of the weather forecasting. In [10] the Lorenz system was
considered as a model of atmospheric disturbances and as a part of the so-called
LDWNN (Lorenz Distribution Wavelet Neural Network) model. It was established
that the Lorenz system gives more accurate results of the wind speed prediction
comparing to the WNN (Wavelet Neural Network) model.

In recent years an interest to the Lorenz system is growing up in the field of
cryptography (signal generated by the Lorenz system can be considered as a pseudo-
random sequence). For instance, in [14], a method for generating sequences of
pseudo-random numbers based on the generalized Lorenz system is proposed (in
this paper the Lorenz system used to generate a binary sequence). It was shown that
this method shows an effective crypto-robustness. Also, a comparison between the
presented method and other methods for generating of pseudo-random sequences is
considered. In [15] authors propose a novel asymmetric watermarking mechanism
using the Lorenz system. This feature added nonlinear properties to this mechanism,
as well as expanded the space of generated keys. Thus, the Lorenz system remains
relevant even after more than fifty years of its discovering and gives promising and
rich ideas to researchers in various fields of modern science. In this chapter we take a
fresh look to the Lorenz system under various strongly nonlinear control (Coulomb
friction and hysteresis friction ) and discuss some features occurring in this case.

1.2 Chaos: Analysis and Control

Analysis of chaotic dynamics in nonlinear systems usually reduces to two separate
problems: diagnosis of the system’s behaviour (analysis) and control of the dynamics
(usually, by means of an appropriate excitation). At the same time, two main meth-
ods usually implement for chaos control: program control (by means of an initially
defined time function) and feedback control principles.

Diagnosis allows to investigate behaviour of the system at different values of the
system parameters or, for example, depending on the initial conditions, etc. From
both fundamental and applied points of view it is very important to analyze dynamics
of the system depending on its parameters. An excellent example is a changing of

Fig. 2 Phase portraits of system (1) with parameters σ = 10, b = 8/3 and varying parameter r :
left panel—r = 0.5 , middle panel—r = 5, right panel—r = 28
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Fig. 3 Left panel—Phase portrait of system (1) with the corresponding parameters: σ = 10, r =
300, b = 8/3. Right panel—the x-coordinate versus time

the Rayleigh number in the Lorenz system (see Fig. 2). Varying this parameter a
critical value when system (1) loss stability was found. Determining the dependence
of solutions on the initial conditions is also an important task in the analysis of chaotic
systems. Particularly, this task makes it possible to determine the attraction regions,
as well as to identify the type of behaviour as it was done by Lorenz [1].

One of the well-known approaches to chaos control is based on the parameters
varying. Indeed, by increasing parameter r in the classical Lorenz system (1), we can
achieve completely regular dynamics (for r = 300 an absolutely stable limit cycle
is observed, see Fig. 3).

Another implementation of chaos control is based on using the control function
in one (or more) equation of the Lorenz system (modified Lorenz system):

⎧
⎪⎨

⎪⎩

ẋ = σ(y − x)

ẏ = x(r − z) − y + u

ż = xy − bz

, (2)

where u is the control input.Additional variable introduced in order to control dynam-
ics of the system. Depending on how it acts, dynamics of the systemwill also change.

2 Modified Lorenz System: Water Wheel Under Coulomb
Friction

2.1 Water Wheel Model

One of the real physicalmodel described byLorenz equations is awaterwheelmodel.
This model has been constructed by Willem Malkus and his colleagues in1970s. A
water wheel includes some leaking cups on the rim of thewheel, liquid flows from the
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Fig. 4 A water wheel model with different rates of water flow. Left panel—low rate and the water
wheel remains motionless; middle panel—moderate rate and the water wheel moves with a steady
speed; right panel—high rate and the water wheel moves chaotically

top and each cup leaks from the bottom. Under different input flow rates, the wheel
will fixed, spin one way, or spin chaotically (direction is changing unpredictable)
(see Fig. 4).

2.2 Main Equations

Usually, authors consider an ideal model [16–19] and do not take into account the
Coulomb friction on the rim [20] which, obviously, exists in a real physical model.
In this chapter we pay attention to this fact and modify the classical Lorenz-Malkus
water wheel model. Following the derivation of equations describing the Lorenz-
Malkus model [16], ω is an angular velocity of the water wheel. It is clear, that the
dry friction (the Coulomb model) affects only the speed of the wheel:

Nd f = m sign(ω), (3)

where m is the coefficient of the dry friction, sign(·) is a standard signum function.
Following the second Newton’s law (as it was done in [17] with one remark: in our
consideration the water wheel is placed in the vertical plane relative to the Earth
surface), the rate of change of the angular momentum equals to the torque which is
the sum of Ng (gravity component), Nd f (a component describing by equation (3)),
Nν (viscous friction component), Nw (a component corresponding to bringing the
incoming water flow up to the speed of the cup into which it falls):

I
dω

dt
= Ng + Nw + Nμ + Nd f , (4)
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and rewriting each of these components in an explicit form, equation (4) take the
form:

dω

dt
= Mg

I
y − α

I
ω + λ

Iw
I

ω − m

I
sign(ω), (5)

where g is the garvitational acceleration, α is a coefficient of the viscous friction, m
is a coefficient of the dry friction, Iw is the moment of inertia of the water, λ is the
cup leakage parameter, M is the total mass of the water. Equations for y and z can
be represented as (following to [16]):

dy

dt
= ωz − λy, (6)

dz

dt
= −ωy + λ(R − z), (7)

where R is a radius of the water wheel. Finally, bringing equations and parameters
in (5–7) to the dimensionless form (in this case ω turns to x), the modified Lorenz-
Malkus water wheel model reads:

⎧
⎪⎨

⎪⎩

ẋ = σ(y − x) − Msign(x),

ẏ = x(r − z) − y,

ż = xy − bz,

(8)

where Md f is a coefficient of the dry friction moment. In this model variables have
the following meaning:

• x is an angular velocity of the water wheel;
• y and z are coordinates of center of mass of the water.

2.3 Stationary Points

It is known that investigation of any nonlinear system described by differential equa-
tions starts from analysis of stationary points. These points play a special role in
system behaviour. Therefore, we start from identification of stationary points for the
modified Lorenz-Malkus system (8). Following the standard approach, ẋ , ẏ and ż
are supposed to be zero, then system (8) reads:

⎧
⎪⎨

⎪⎩

σ(y − x) − Md f sign(x) = 0

x(r − z) − y = 0

xy − bz = 0

. (9)

A solution to algebraic equations (9) determines a set of stationary points. Additional
term Md f sign(x) complicates the process of finding stationary points unlike for the
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classical Lorenz system and an explicit form of the obtained points has a quite
complicated for analysis form (see Appendix). However, we show numerical values
of these points for the system with parameters σ = 10, r = 28, b = 8/3, Md f = 3:

P0 = (0, 0, 0)

P1 = (8.642059263, 8.34205926, 27.03471396)

P2 = (−8.330947618,−8.630947618, 26.9639896)

P3 = (−0.011111644,−0.311111644, 0.001296360)

P4 = (0.011111644, 0.311111644, 0.001296360)

. (10)

A set of stationary points is denoted by Pi , i = 0 . . . 4. As can be seen from Eq. (10)
we obtain two more stationary points (points P3 and P4) comparing to the classical
system, however other three points have similar values. An analysis of the system
behaviour in the neighborhoodof these pointswas carried out using thefirst Lyapunov
method.

An analysis of the trajectories behaviour near point P0 starts from the identifi-
cation of type of this point. For that reason, the standard linearization procedure is
implemented. A solution to system (8) can be written in the form:

A = A0 + Ã, (11)

where A = (x(t), y(t), z(t))T is a column vector of the time-dependent variables,
A0 = (x0, y0, z0)T is a column vector of coordinates of stationary point (in our case
this vector is (0, 0, 0)), and Ã = (̃x(t), ỹ(t), z̃(t))T is a column vector of small addi-
tives. Further, keeping only the main terms in right-hand sides of the linearised
system, we obtain: ⎧

⎪⎨

⎪⎩

ẋ = σ(ỹ − x̃) − Md f sign(̃x),

ẏ = r x̃ − ỹ − x0̃z − x̃ z0,

ż = −b̃z + x0 ỹ + x̃ y0,

(12)

where terms of zero-order have removed, because (x0, y0, z0) is a stationary point,
and term Md f sign(̃x + x0) is replaced by2: Md f (sign(̃x) + sign(x0)).

Note, that linearization of the right-hand side of the first equation in (12) is impos-
sible due to the non-smoothness of the dry friction term. However, assuming that
time dependence of the perturbation of small additives is exponential and keeping
only term −Md f sign(̃x) in the first equation, we obtain the eigenvalue problem. The
results of numerical simulation show that all eigenvalues are real and negative inde-
pendent on the Md f value (in our case only positive values of this parameter has an

2Using the following obvious relation: sign(x) + sign(y) − 1 ≤ sign(x + y) ≤ sign(x) +
sign(y) + 1.
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Fig. 5 Trajectories behaviour in a small neighborhood of stationary points for system (8)

interest), therefore point P0 is a stable node. An illustration of the behaviour of phase
trajectories near P0 and other four points3 are presented in Fig. 5.

2.4 Dynamical Features

This section discusses dynamical features of the modified Lorenz-Malkus system.
First of all, it seems interesting to consider the system dynamics depending on the
parameter corresponding to the moment of dry friction Md f , and obviously this new
parameter must change dynamics.

Firstly, note that dependence of the time during which the system exhibit chaotic
dynamics on the dry friction parameter is essentially nonlinear. Qualitatively this fact
is shown in Fig. 6. For example, at Md f = 3 the system is staying in chaotic regime
during a longer period of time as compared to the case when Md f = 2. Systems
were solved with same initial conditions, however, this property holds for any initial
conditions. At the same time, a period during which the system is in chaotic regime
for various values of Md f depends on the initial conditions. This feature is due to the
fact that additional term−Md f sign(x) leads to an additional parametric dependence
described by a non-smooth function, which, in turn, complicates the structure of the
phase space. Also, the time when the system trajectory comes to a stable zero point
directly depends on how soon it enters the attraction basin.

An additional contribution to understanding the system dynamics gives an evolu-
tion of the x-coordinate depending on the parameter Md f . As can be seen in Fig. 7
for time instant t = 10 the behaviour of function x(Md f ) for small values of the
dry friction parameter has a completely deterministic structure. However, starting
from a certain value of Md f , x(Md f ) exhibits chaotic behaviour and tends to zero
while Md f increases (this is clearly seen from the right panel in Fig. 7). That means
that the solution trajectory entered in an attraction basin and rapidly came to stable
point P0. Moreover, we also note (as follows from the results presented in the left
panel of Fig. 7) that for any fixed time instant with a non-zero value of Md f the sys-
tem inevitably comes to a small neighborhood of the origin. The modelling results

3During numerical simulations it was established that P1 and P2 are saddle-node points, and P3
and P4 are unstable focuses.
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were obtained for a fixed time instant (200 units of model time), initial conditions
are (1, 1, 1), and parameters of the system are σ = 10, r = 28, b = 8/3.

2.5 Lyapunov Characteristic Exponents

The presence or absence of chaotic behaviour is closely related to instability. One
of the most important methods that allow to identify the stability of the system is
the Lyapunov method. This method characterizes the behaviour of a given trajec-
tory depending on the behaviour of trajectories located in its small neighborhood.
An informative characteristic of this behaviour is the spectrum of Lyapunov char-
acteristic exponents.4 Chaotic behavior is fully determined by the largest Lyapunov
exponent. Its value uniquely determines the type of dynamical regime. However,
a well-known fact that following the fundamental Kolmogorov-Arnold-Moser the-

Fig. 6 Phase portraits of the modified Lorenz-Malkus system (8) with parameters σ = 10, r = 28,
b = 8/3 and varying parameter Md f : left panel – Md f = 0.5, middle panel – Md f = 2, right panel
– Md f = 3

Fig. 7 Left panel – coordinate x versus Md f and time. Right panel – the x-coordinate versus Md f
at different time instants: t = 3 – orange curve, t = 5 – blue curve, t = 10 – red curve

4Recall, that number of Lyapunov exponents is equal to the dimension of the system’s phase space.
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Fig. 8 Left panel – The Lyapunov spectrum versus time (the largest Lyapunov exponent is indicated
by blue curve); Right panel – phase portrait of the corresponding modified Lorenz-Malkus system.
Modelling parameter are: σ = 10, r = 28, b = 8/3, Md f = 3. Initial conditions are (1, 1, 1)

orem [3], to obtain a spectrum of Lyapunov characteristic exponents, it is enough
to consider an evolution of the perturbation only for the individual solution of the
Lorenz system (Fig. 8).

In this work the spectrum of Lyapunov exponents were calculated using the stan-
dard Gram-Schmidt orthogonalization procedure together with the Wolf algorithm
(for details, see [21]). An analysis of the spectrum of Lyapunov exponents for
system (8) with the corresponding parameters σ = 10, r = 28, b = 8/3, Md f = 3
showed that on the initial time period (around 150 units of model time) the largest
Lyapunov exponent is positive, therefore the solution is chaotic. However, after that,
the largest Lyapunov exponent monotonically decreases down to the region of neg-
ative values, which indicates the stabilization of the system in a stable fixed point.5

Assumption 1 Stabilization of the modified Lorenz-Malkus system occurs at any
non-zero value of the dry friction parameter Md f .

In this work we also analyze the dependence of the dry friction parameter Md f

on parameter r in a situation when the largest Lyapunov exponent is equal to zero.
Note, that dependence Md f (r), obtained during numerical simulations, has a very
irregular structure as can be seen in Fig. 9. Based on the features presented above, it
can be concluded that there is an attractive manifold, in which the solution trajectory
inevitably ends up in an arbitrarily small neighborhood of a stable stationary point P0.

5This point is P0 with coordinates (0, 0, 0).
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Fig. 9 The dependence of parameterMd f on r , corresponding to zero value of the largest Lyapunov
exponent. Numerical simulations were carried out for initial conditions (10, 10, 10) and calculated
during 500 units of model time

2.6 Stochastic Features

This section discusses stochastic properties of the modified Lorenz-Malkus system.
Particularly, we investigate the time during which the system is in chaotic regime
depending on the initial conditions. Figure 10 shows histograms of the distribution
of time during which the system is in chaotic regime for different values of the dry
friction moment. To simulate the corresponding histograms in a randomway,6 initial
conditions were selected from the cube with a side of 20 units centered at the origin
(ten thousand initial values were generated). Next, we considered a quantity corre-
sponding to the time during which the solution trajectory was not in a neighborhood
of the origin. It is important to note, that obtained histograms are stable enough for
various sets of initial conditions. The shape of histograms obviously depends on the
parameter Md f , however, in this work, we do not identify the universal distribution
law which describes histograms for various values of the dry friction parameter. At
the same time, it was found that for some values of Md f (particularly, for Md f = 10),
the obtained histograms can be approximated with a good accuracy by the Gamma
distribution which has the form:

f (α, β) = 1

�(α)β

(
x

β

)α−1

e−x/β, (13)

where α and β are parameters of the Gamma distribution, and �(·) is a standard
Gamma function. In the right panel of Fig. 10 we show approximation of the his-
togram by the Gamma distribution (13) with parameters α = 4.9, β = 1.98.

6We supposed the uniform distribution of initial conditions.
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Fig. 10 Histograms describing how much time needs to solution to achieve the origin. Numerical
simulations was carried out with following parameters: σ = 10,r = 28, b = 8/3 and Md f = 3 (left
panel),Md f = 10 (right panel). Red curve on the right panel corresponds to the Gamma distribution
with parameters α = 4.9, β = 1.98

The obtained result can be used in Bayesian statistics, biology,medicine andmany
other fields where the Gamma distribution is traditionally used. In other words,
for some values of Md f , the modified Lorenz system may serves as a “natural”
pseudo-random number generator due to stochastic properties satisfying the Gamma
distribution law.

2.7 Bifurcation Analysis

It is well-known, that a bifurcation analysis and the corresponding bifurcation dia-
grams are powerful tools in analysis of systems with chaotic regimes. Most of these
systems have internal parameters which determine in general the behaviour of sys-
tems. During a monotonic slight change of these parameters, a transition from one
mode to another can occur. A set of events that happen during these changes are
called bifurcations.

In this work for the modified Lorentz-Malkus systemwe construct the bifurcation
diagram in not a common sense, but merging a set of bifurcation diagrams because,
during the numerical simulation, it has to be taken into account that when the tra-
jectory hit the attracting region of the origin, a solution to the system is localized in
the zero-dynamics region.7 Therefore, in presented figures there are many points in
the domain of zero values. As can be seen from the left top and bottom panels in
Fig. 11 for the modified system (8), transition to chaos becomes a bit later comparing
to the classical Lorenz system. For large values of the Rayleigh parameter, transition
to chaos occurs through a cascade of period-doubling, which can be seen from the
right top and bottom panels in Fig. 11.

7Note, that zero is absolutely stable regardless of the value of parameter r .
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Fig. 11 Bifurcation diagrams depending on the parameter r . Top panels correspond to the classical
Lorenz system;Bottompanels correspond to themodifiedLorenz-Malkus system (8)with parameter
Md f = 3

2.8 Analysis of a “flat” System

Analysis of trajectories near stationary points is important for studying the dynamic
features of the system, and also gives some ideas about the structure of the attracting
manifold. To simplify an analysis of the modified Lorenz-Malkus system (8), we
consider a situation when z = const . Further, consider a two-dimensional system:

⎧
⎨

⎩

ẋ = σ(y − x) − Md f sign(x) = 	(x, y),

ẏ = x(r − 1

b
xy) − y = 
(x, y).

(14)

In this section, we will consider vector fields of the “flat” system. This will help us
to understand the trajectories behaviour, especially near stationary points. One of
the most important characteristics in the analysis of vector fields is an index of the
stationary point, which, first of all, gives an opportunity to establish the type of the
singular point, namely, whether it belongs to the saddle type or not. The calculation
of the index of the stationary point is carried out by finding a sign of the determinant
which includes partial derivatives of the right-hand sides of equations (14):

sign

∣
∣
∣
∣
	(x, y)x 	(x, y)y

(x, y)x 
(x, y)y

∣
∣
∣
∣ , (15)
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Fig. 12 Attraction manifold for trajectories of the “flat” modified Lorenz-Malkus system

where lower indexes denote partial derivatives. If the obtained value equals to −1,
then the investigated point is a saddle-type point, otherwise when the value is 1, then
this point is either center, or node, or focus.

For system (14) determinant (15) can be written as:

∣
∣
∣
∣
−σ − 2Md f δ(0) σ

r −1

∣
∣
∣
∣ . (16)

Obviously, the determinant (16) is σ(1 − r) + 2Md f δ(0) (here δ(·) is theDirac delta-
function), and it is clear that 2Md f δ(0) � σ(1 − r).

Based on the obtained results the following conclusion can be formulated: zero in
the modified Lorenz system is not a saddle regardless of the value r , which is clearly
seen from the resulting expression. Let us analyze the behaviour of trajectories near
stationary point P0. The vector field of the modified flat system sufficiently differs
from the vector field of the classical system, particularly, because P0 is a stable node.
Points P1 and P2 also bring changes to the vector space near zero since they are
saddle points.

As can be seen from the right panel in Fig. 12 a set of all paths is separated
into three subsets that correspond to three attractive points (two focuses and one
stable node). Note, that dry friction parameter Md f is a bifurcation parameter. When
parameter Md f becomes positive, then from the saddle point, two symmetric saddle
points and a stable node at the origin are born (see Fig. 13).

It is clear that the size of the region depends on the value of parameter Md f and
is determined by positions of two saddle points P1 and P2. The larger attraction area
corresponds to the larger value of parameter Md f . Moreover, as can be seen from
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Fig. 13 Bifurcation process from a saddle-node to two saddle-nodes and a stable node during
varying parameter Md f from zero to positive value

Fig. 14 Separatrices of two
saddle-nodes. Blue curve
corresponds to eigenvectors
of the linearized matrix of
system (14)
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Fig. 14 the structure of the attracting region has a complex structure even in a two-
dimensional case. An additional fact: the tangent to the boundary of the attracting set
in a small neighborhood of saddle points obviously coincides with eigenvectors of
the matrix of the linearized system in the neighborhood of the corresponding points
(see the Fig. 14). Separatrices are shown in Fig. 14 and were constructed by solving
the system in the reverse time.
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3 Modified Lorenz-Malkus System Under Hysteresis
Friction: The Bouc-Wen Model

3.1 Some Preliminaries to the Bouc-Wen Model

One of the famous approaches that allow describing many real-life physical systems
and processes with memory is based on the model of hysteresis phenomena. It is
caused, on the one hand, by design features of such systems, and, on the other hand, by
features of external conditions that directly effect the system. Hysteresis phenomena
are quite spread within physical, chemical, biological, and other processes in which
states of the object are ambiguously dependent on external conditions. One of the
main examples of a hysteresis relation is the dependence of the magnetization on the
external field strength. Note that this dependence is caused not only by current state
of the object (system) but also depends on its history. Historically, one of the first
references to hysteresis dependencies was presented in the work of J. Ewing [22].

From a mathematical point of view, a hysteresis operator can be considered as
a “black box”, which respond to an external action (input) with a certain reaction
(output). At the same time, the output value depends on the state of the object at the
initial time instant. In this work, the carrier of hysteresis properties is understood
as operator W (depending on its initial state as a parameter), which corresponds to
continuous output u(t) and receive continuous input signal x(t) (see Fig. 15). The
parametric relationship between input and output of such an operator is called as a
hysteresis loop. Note that hysteresis curves are usually identical for periodic input
signals with different frequencies, in other words, properties of operator W do not
depend on the time scale. In this case such an operator is called static. The shape (in
particular, the area of the loop) significantly effects the dynamics of systems contain-
ing hysteresis term. This feature makes it possible to introduce hysteresis operators
in the control tasks. In recent years many hysteresis models have been obtained to
solve various problems in a wide field of engineering tasks. First of all, let us note
work [25], which has made a huge contribution to hysteresis analysis. Particularly,
this work is a base to the so-called design approach to hysteresis phenomena.

One of the most frequently used phenomenological models of hysteresis is the
Bouc-Wen model. This model was first proposed by Bouc [23] in 1971 and gener-
alized by Wen in 1976 [24]. The Bouc-Wen model is represented as the first-order
nonlinear differential equation of the following form:

Fig. 15 The “black-box” approach. Here x(t) is an input signal, u(t) is an output signal, W is a
hysteresis operator


