Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”

ER(ZR) 2020, Ufa, Russia, 15–18 April 2020
Smart Innovation, Systems and Technologies

Volume 187

Series Editors
Robert J. Howlett, Bournemouth University and KES International, Shoreham-by-sea, UK
Lakhmi C. Jain, Faculty of Engineering and Information Technology, Centre for Artificial Intelligence, University of Technology Sydney, Sydney, NSW, Australia
The Smart Innovation, Systems and Technologies book series encompasses the topics of knowledge, intelligence, innovation and sustainability. The aim of the series is to make available a platform for the publication of books on all aspects of single and multi-disciplinary research on these themes in order to make the latest results available in a readily-accessible form. Volumes on interdisciplinary research combining two or more of these areas is particularly sought.

The series covers systems and paradigms that employ knowledge and intelligence in a broad sense. Its scope is systems having embedded knowledge and intelligence, which may be applied to the solution of world problems in industry, the environment and the community. It also focusses on the knowledge-transfer methodologies and innovation strategies employed to make this happen effectively. The combination of intelligent systems tools and a broad range of applications introduces a need for a synergy of disciplines from science, technology, business and the humanities. The series will include conference proceedings, edited collections, monographs, handbooks, reference books, and other relevant types of book in areas of science and technology where smart systems and technologies can offer innovative solutions.

High quality content is an essential feature for all book proposals accepted for the series. It is expected that editors of all accepted volumes will ensure that contributions are subjected to an appropriate level of reviewing process and adhere to KES quality principles.

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, SCOPUS, Google Scholar and Springerlink **

More information about this series at http://www.springer.com/series/8767
Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”

ER(ZR) 2020, Ufa, Russia, 15–18 April 2020
Organization

General Chair
Yulia Antokhina

Co-chairs
Ramil Bakhtizin
Sergey Emelyanov
Anatoliy Ovodenko
Vladislav Shishlakov

Committees

Chair of Programme Committee
Andrey Ronzhin

Programme Committee
Karsten Berns, Germany
Nikolay Bolotnik, Russia
Yi-Tung Chen, USA
Sergey Chigvincev, Russia
Alexander Danilov, Russia
Vlado Delic, Serbia
Ivan Ermolov, Russia
Naohisa Hashimoto, Japan
Han-Pang Huang, Taiwan
Shu Huang, Taiwan
Viktor Glazunov, Russia
Mehmet Guzey, Turkey
Oliver Jokisch, Germany
Airat Kalimgulov, Russia
Alexey Kashevnik, Russia
Marat Khakimyanov, Russia
Regina Khazieva, Russia
Pavel Khlyupin, Russia
Sergey Konesev, Russia
Eugeni Magid, Russia
Roman Meshcheryakov, Russia
Zuhra Pavlova, Russia
Vladimir Pavlovskiy, Russia
Francesco Pierri, Italy
Yuriy Poduraev, Russia
Mirko Rakovic, Serbia
Raul Rojas, Germany
Jose Rosado, Portugal
Vitali Shabanov, Russia
Hooman Samani, Taiwan
Yulia Sandamirskaya, Switzerland
Jesus Savage, Mexico
Valery Sapelnikov, Russia
Robert Sattarov, Russia
Vladimir Serebrenny, Russia
Michail Sit, Moldova
Lev Stankevich, Russia
Tilo Strutz, Germany
Georgi Vukov, Bulgaria
Sergey Yatsun, Russia
Arkadiy Yuschenko, Russia
Milos Zelezny, Czech Republic
Lyudmila Zinchenko, Russia

Co-chair of Organizing Committee

Pavel Khlyupin
Sergey Solyonyj
Sergey Yatsun
Andrey Ronzhin

Organizing Committee

Radmir Aflyatunov
Oksana Emelyanova
Natalia Dormidontova
Maksim Ivanov
Organization

Nataliya Jarinova
Ilgiza Kaekberdin
Natalia Kashina
Timur Khabibullin
Boris Lushnikov
Alina Matova
Ekaterina Miroshnikova
Anna Motienko
Margarita Avstriyskaya
Irina Podnozova
Elena Reznik
Anton Saveliev
Ekaterina Savelyeva
Sergei Savin
Oksana Solenaya
Dmitry Tyurin
Andrey Yatsun
Foreword

Dmitry Aleksandrovich Zavalishin (1900–1968)—a Russian scientist, corresponding member of the USSR Academy of Sciences, founder of the school of valve energy converters based on electric machines and valve converters energy. The first conference was organized by the Institute of Innovative Technologies in Electromechanics and Robotics of the St. Petersburg State University of Aerospace Instrumentation in 2006.

The purpose of the conference is the exchange of information and progressive results of scientific research work of scientific and pedagogical workers, young scientists, graduate students, applicants and students in the field of: automatic control systems, electromechanics, electric power engineering and electrical engineering, mechatronics, robotics, automation, technical physics and management in the electric power industry.

We express our deepest gratitude to all participants for their valuable contribution to the successful organization of ER(ZR)-2020, hope for and look forward to your attention to the next International Conference on Electromechanics and Robotics “Zavalishin’s Readings” in 2021. The conference website is located at: http://suai.edu.ru/conference/zav-read/.

St. Petersburg, Russia
May 2020

Prof. Yulia A. Antokhina
General Chair of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”—2020
Rector of the St. Petersburg State University of Aerospace Instrumentation
This year, the conference The 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”—2020, ER(ZR)-2020 was organized with XIV International Conference “Vibration-2020. Vibration technologies, mechatronics and controlled machines” and V International Conference “Electric drive, electrical technology and electrical equipment of enterprises” during April 15–18, 2020 in Ufa, Russia. The conferences were organized by St. Petersburg State University of Aerospace Instrumentation (SUAI, St. Petersburg, Russia), St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS, St. Petersburg, Russia), Southwest State University (SWSU, Kursk, Russia) and Ufa State Petroleum Technical University (USPTU, Ufa, Russia). The conference is held with the financial support of the Russian Foundation for Basic Research, project No. 20–08–20030.

Due to the COVID–19 pandemic in the world, for the first time ER(ZR)-2020 was organized as a virtual conference. The virtual conference in the online format via Zoom service also had a number of advantages including: an increased number of participants, and no costs for travel and accommodation, comfortable home conditions, etc.

During the conference the invited talks were given by Prof. Jesus Savage (National Autonomous University of Mexico, Mexico), Assoc. prof. Lingfei Xiao (Nanjing University of Aeronautics and Astronautics, China), Ilshat Mamaev (Karlsruhe Institute of Technology, Germany), Prof. Oleg Darintsev (Ufa State Aviation Technical University Russia), Prof. Vladimir Fetisov (Ufa State Aviation Technical University, Russia), Assoc. prof. Sergey Konesev (Ufa State Oil Technical University, Russia), Prof Robert Sattarov (Ufa State Aviation University, Russia). More then 173 papers of authors from China, Czech Republic, Mexico, Russia, Taiwan, Turkey, Uzbekistan, Viet Nam and Japan were submitted to the conference and each paper was reviewed by several scientists. Around 30% of the best papers were published in English proceedings by Springer in series Smart Innovation, Systems and Technologies indexed in SCOPUS, Thomson Reuters (Web of Science), Inspec, etc. Due to great efforts of reviewers this book was carefully prepared and consists of 44 contributions.
Special thanks are due to the members of the Local Organizing Committee for their tireless effort and enthusiasm during the conference organization. Hope for and look forward to your attention to the ER(ZR)-2021. The conference website is located at: http://suai.edu.ru/conference/zav-read/.

St. Petersburg, Russia Prof. Andrey L. Ronzhin
May 2020 Chair of Program Committee
 of 15th International Conference
 on Electromechanics and Robotics
 “Zavalishin’s Readings”—2020
 Director of St. Petersburg Institute for Informatics
 and Automation of the Russian Academy of Sciences

Prof. Vladislav F. Shishlakov
Co-Chair of 15th International Conference
 on Electromechanics and Robotics
 “Zavalishin’s Readings”—2020
 Vice-Rector for Educational Technologies
 and Innovative Activities

St. Petersburg State University of Aerospace Instrumentation
Part I Keynote Lectures

1 Aerial Robots and Infrastructure of Their Working Environment .. 3
 Vladimir Fetisov
 1.1 Introduction: What Is AR, UAV, UAS 3
 1.2 Components of Unmanned Aerial System 4
 1.2.1 Main Functional Means 4
 1.2.2 Supporting Resources 9
 1.2.3 Personnel ... 9
 1.2.4 Means of Integration with Other Systems 10
 1.2.5 Software .. 10
 1.2.6 Documentation 11
 1.3 Service Stations ... 11
 1.3.1 Motivation .. 11
 1.3.2 Classification of Replenishment Service Stations 12
 1.3.3 Known Solutions Realizing Open Pads Conception.
 Classification Criteria 15
 1.3.4 Platforms Based on Intelligent Contact Pads 17
 1.3.5 Charging Stations Based on Flat Parallel
 Electrodes ... 19
 1.4 Conclusion .. 21
 References ... 21

2 Microgrippers: Principle of Operation, Construction,
and Control Method ... 25
 Oleg Darintsev
 2.1 Introduction .. 25
 2.2 Applications and Specifications of Microgripping Devices ... 26
 2.3 Examples of Microgripper Designs 29
Part II Robotics and Automation

4 Tactical Level of Intelligent Geometric Control System for Unmanned Aerial Vehicles

Mikhail Khachumov

4.1 Introduction ... 56
4.1.1 Motivation .. 56
4.1.2 Related Works ... 56
4.1.3 Main Contributions .. 57

4.2 The Principles of Intelligent Geometric Control 58
4.2.1 The Purpose of Intelligent Geometric Control 58
4.2.2 Hierarchical System to Control a Dynamic Object 58

4.3 Tactical Control Level .. 60
4.3.1 Trajectory Tracking Problem 60
4.3.2 Pontryagin’s Maximum Principle 61
4.3.3 A Set of Control Rules for Pursuing a Target 63

4.4 Executive Control Level .. 64

4.5 Simulation of UAV Movement and Mission Execution 65

4.6 Conclusion .. 66

References .. 67
Three-Dimensional Consensus-Based Control of Autonomous UAV Swarm Formations
Tagir Muslimov and Rustem Munasypov

5

5.1 Introduction
5.2 Preliminary Notes and Used Models
5.2.1 Multi-UAV System Model and UAV Model
5.2.2 Statement of Problems
5.2.3 Architecture of Interaction in a Decentralized Multi-UAV System
5.3 Strategy to Control 3D UAV Swarm Formations
5.3.1 Formation Control for Horizontal Path Following
5.3.2 Formation Control for Descending Path Following
5.4 Simulation Results
5.5 Conclusions
References

Approach to UAV Swarm Control and Collision-Free Reconfiguration
Valerii Izhboldina, Igor Lebedev, and Aleksandra Shabanova

6

6.1 Introduction
6.2 UAV Swarm Control Approach
6.3 Reconfiguration Algorithms
6.4 Results
6.5 Conclusion
References

Approach to Robotic Mobile Platform Path Planning Upon Analysis of Aerial Imaging Data
Egor Aksamentov, Konstantin Zakharov, Denis Tolopilo, and Elizaveta Usina

7

7.1 Introduction
7.2 Related Work
7.3 Orthomosaic Image Stitching Using Georeferencing to GPS
7.4 Building 3D Map of Area
7.5 Path Planning Algorithm for a Robotic Vehicle
7.6 Navigation Grid Building
7.7 Experiments and Results
7.8 Conclusion
References

Improving Methods of Objects Detection Using Infrared Sensors Onboard the UAV
Peter Trefilov, Mark Mamchenko, Maria Romanova, and Igor Ischuk

8

8.1 Introduction
8.2 Problem Statement
9 Integrated Sensor System for Controlling Altitude–Velocity Parameters of Unmanned Aircraft Plane Based on the Vortex Method .. 115
Elena Efremova and Vladimir Soldatkin
9.1 Introduction 115
9.2 Formation of Primary Information on the Basis of the Vortex Method ... 115
9.3 Algorithms for Determining the Altitude–Velocity Parameters of the Unmanned Aircraft Plane 119
9.4 Conclusion 123
References .. 124

10 Synthesis of SimMechanics Model of Quadcopter Using SolidWorks CAD Translator Function 125
Sergey Jatsun, Boris Lushnikov, Oksana Emelyanova, and Andres Santiago Martinez Leon
10.1 Introduction 125
10.2 Basic Concepts of 3D Model Export Process (Integration of SolidWorks and MATLAB/Simulink Environments) 126
10.3 UAV Simulator Design 127
10.4 Simulation Results 133
10.5 Conclusions and Further Work 135
References .. 136

11 Technology for Constructing Multifunctional Controlling System of Motion’s Parameters of Unmanned Single-Rotor Helicopter .. 139
Aleksandr Nikitin, Vyacheslav Soldatkin, and Vladimir Soldatkin
11.1 Introduction 139
11.2 Theoretical Bases of Construction of System 140
11.3 Variants of Construction of Sensor System 141
11.4 Algorithms Information Processing at Various Modes of Operating of Helicopter 144
11.5 Analysis of Instrumental Errors of the System 146
11.6 Conclusion 148
References .. 149
12 Mathematical Modeling of Stable Position of Manipulator Mounted on Unmanned Aerial Vehicle 151
Vinh Nguyen, Quyen Vu, and Andrey Ronzhin
12.1 Introduction 151
12.2 Modeling Aerial Manipulation System 154
12.3 Mathematical Modeling of Stable Position of Manipulator Mounted on UAV 155
12.4 Conclusion 160
References .. 164

13 Active Phased Antenna Arrays for Long-Range Mobile Radars Based on Quadcopters 165
Denis Milyakov, Vladimir Verba, Vladimir Merkulov, and Andrew Plyashechnik
13.1 Introduction 165
13.2 Literature Review 167
13.3 Problem Solution 168
13.4 Conclusion 172
References .. 174

14 Collaborative Robots: Development of Robotic Perception System, Safety Issues, and Integration of AI to Imitate Human Behavior 175
Rinat Galin and Roman Meshcheryakov
14.1 Introduction 175
14.2 Collaborative Robots 176
14.3 Development of Intelligent Robotic Perception System .. 179
14.4 Safety Zone of a Collaborative Robot in a Shared Space 181
14.5 Conclusion 183
References .. 184

15 Hand Gestures Recognition Model for Augmented Reality Robotic Applications 187
Youshaa Murhij and Vladimir Serebrenny
15.1 Introduction 187
15.1.1 Related Work 188
15.1.2 Hardware and Software 189
15.2 Methodology and Main Procedure 189
15.2.1 Overview 189
15.2.2 General Neural Network Structure 189
15.2.3 Applied Loss Functions 191
15.2.4 Custom Dataset 192
15.2.5 Augmented Reality in Robotics 192
15.2.6 Concept of Programming 193
15.2.7 Unity Integration 194
16 An Experimental Analysis of Different Approaches to Audio–Visual Speech Recognition and Lip-Reading

Denis Ivanko, Dmitry Ryumin, and Alexey Karpov

16.1 Introduction 197
16.2 Background 199
16.3 Analysis and Implementation of State-of-the-Art Approaches 201
 16.3.1 GMM-CHMM Model 201
 16.3.2 DNN-HMM Model 202
 16.3.3 End-to-End Model 203
16.4 Data and Evaluations 206
16.5 Conclusions 208
References .. 208

17 The Concept of Robotics Complex for Transporting Special Equipment to Emergency Zones and Evacuating Wounded People

Mark Mamchenko, Pavel Ananyev, Alexander Kontsevoy, Anna Plotnikova, and Yuri Gromov

17.1 Introduction 211
17.2 Analysis of the Current State in the Field of EMERCOM of Russia Robotics 212
17.3 The Purpose and Composition of the Promising Robotics Complex, as Well as the Imposed Requirements ... 214
 17.3.1 The Purpose and Composition of the Promising Robotics Complex 214
 17.3.2 Requirements for the Promising Robotics Complex 215
17.4 Promising Robotics Complex Engagement Concept 216
 17.4.1 Robotic System Deployment and Moving to the Emergency Zone 216
 17.4.2 Safe Evacuation of the Wounded 217
17.5 Electronic Components of the Robot 218
17.6 Conclusion and Future Work 220
References .. 221
22 Mathematical Modeling of Load Lifting Process with the Industrial Exoskeleton Usage
Sergey Jatsun, Andrei Malchikov, Andrey Yatsun, and Ekaterina Saveleva

22.1 Introduction 269
22.2 Scheme Justification of Investigated Structure 270
22.3 Kinematical Analysis of Load Lifting Process 273
22.4 Dynamical Analysis of Load Lifting Process 275
22.5 Conclusion 276
References .. 277

23 Deep Q-Learning Algorithm for Solving Inverse Kinematics of Four-Link Manipulator
Dmitriy Blinov, Anton Saveliev, and Aleksandra Shabanova

23.1 Introduction 280
23.2 Reinforcement Learning Approach for Solving Inverse Kinematics of Manipulator 281
23.3 Deep Q-Learning Algorithm for Solving Inverse Kinematics of Manipulator 283
23.3.1 Dynamic Exploration Coefficient 284
23.3.2 Q-Table 286
23.4 Results .. 287
23.5 Conclusion 289
References .. 290

24 Linearization-Based Forward Kinematic Algorithm for Tensegrity Structures with Compressible Struts
Sergei Savin, Oleg Balakhnov, and Alexander Maloletov

24.1 Introduction 293
24.2 Mathematical Model of a Tensegrity Robot 295
24.3 Local Linearization of the Elastic Forces 296
24.3.1 Fixed-Center Approximation 296
24.3.2 Fixed-Direction Approximation 298
24.3.3 Compound Linear Approximation 299
24.4 Three-Link Tensegrity Structure 300
24.4.1 Forward Kinematics with Local Linearization 301
24.5 Conclusions 302
References .. 302
Contents

25 Continuum Manipulator Motion Model Taking into Account
 Specifics of its Design 305
 Dinar Bogdanov
 25.1 Introduction 305
 25.2 The Design of the Manipulator and Its Kinematics ... 307
 25.3 The Dynamics of the Manipulator Link’s Bend Formation ... 310
 25.4 Results .. 313
 25.5 Conclusion 314
 References .. 316

26 Modeling Wireless Information Exchange Between Sensors
 and Robotic Devices 317
 Alexander Denisov and Oleg Sivchenko
 26.1 Introduction 317
 26.2 Sensor Complex Overview 319
 26.3 Set-Theoretic Model 320
 26.4 Experiments 322
 26.5 Conclusion 325
 References .. 326

27 Multi-robot Coalition Formation for Precision Agriculture
 Scenario Based on Gazebo Simulator 329
 Nikolay Teslya, Alexander Smirnov, Artem Ionov,
 and Alexander Kudrov
 27.1 Introduction 329
 27.2 Related Work 331
 27.2.1 Cooperation in Multi-agent Systems 331
 27.2.2 Robot Interaction Modelling Methods 331
 27.3 An Approach to Multi-robot Coalition Formation Modelling
 and Visualization 333
 27.3.1 Architecture 333
 27.3.2 Level of a Charge 335
 27.3.3 Distance 336
 27.4 Scenario Implementation 337
 27.5 Conclusion 339
 References .. 340

28 Comparative Analysis of Monocular SLAM Algorithms
 Using TUM and EuRoC Benchmarks 343
 Eldar Mingachev, Roman Lavrenov, Evgeni Magid,
 and Mikhail Svinin
 28.1 Introduction 344
 28.2 Related Work 344
 28.2.1 Slam 344
 28.2.2 Benchmarks 345
28.3 Benchmark Comparisons ... 346
28.4 Experiments ... 347
 28.4.1 Hardware ... 347
 28.4.2 Datasets .. 347
 28.4.3 Metrics ... 348
28.5 Evaluation .. 350
28.6 Further Work ... 353
28.7 Conclusion .. 354
References ... 354

29 Laser Rangefinder and Monocular Camera Data Fusion for Human-Following Algorithm by PMB-2 Mobile Robot in Simulated Gazebo Environment .. 357
Elvira Chebotareva, Kuo-Hsien Hsia, Konstantin Yakovlev, and Evgeni Magid
29.1 Introduction ... 358
29.2 Related Work .. 359
29.3 Problems of Human-Following Algorithms Implementation .. 359
29.4 Proposed Solution and Its Evaluation in Gazebo Simulator .. 361
 29.4.1 Evaluation of Human-Following Algorithms in Gazebo .. 362
 29.4.2 Human Detection and Tracking .. 363
 29.4.3 Joint Use of LRF and a Monocular Camera in a Human-Following Algorithm 365
 29.4.4 Simulation Results .. 366
29.5 Conclusion and Future Work 367
References ... 367

30 Evaluation of Visual SLAM Methods in USAR Applications Using ROS/Gazebo Simulation .. 371
Ramil Safin, Roman Lavrenov, and Edgar Alonso Martínez-García
30.1 Introduction ... 372
30.2 SLAM Overview ... 372
30.3 VSLAM Evaluation .. 374
30.4 Proposed Solution .. 376
 30.4.1 Environment .. 376
 30.4.2 Robot Model and Sensors 377
 30.4.3 Dataset Collection ... 378
 30.4.4 Experiments .. 379
30.5 Results .. 380
References ... 381
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.4</td>
<td>Experiments</td>
<td>426</td>
</tr>
<tr>
<td>34.4.1</td>
<td>Dataset</td>
<td>426</td>
</tr>
<tr>
<td>34.4.2</td>
<td>Triggers Generation Using Non-visual Sensor Data</td>
<td>427</td>
</tr>
<tr>
<td>34.4.3</td>
<td>Image-Based Classification Experiment</td>
<td>429</td>
</tr>
<tr>
<td>34.5</td>
<td>Conclusion</td>
<td>430</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>431</td>
</tr>
<tr>
<td>35</td>
<td>Architecture and Algorithms of Geospatial Service for Navigation of Robotic Complexes</td>
<td>433</td>
</tr>
<tr>
<td>35.1</td>
<td>Introduction</td>
<td>433</td>
</tr>
<tr>
<td>35.2</td>
<td>Related Works</td>
<td>434</td>
</tr>
<tr>
<td>35.3</td>
<td>Service Architecture for Robotic Platform Control</td>
<td>436</td>
</tr>
<tr>
<td>35.4</td>
<td>Data Preparation</td>
<td>437</td>
</tr>
<tr>
<td>35.5</td>
<td>Front-End Application</td>
<td>439</td>
</tr>
<tr>
<td>35.6</td>
<td>Conclusion</td>
<td>441</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>442</td>
</tr>
</tbody>
</table>

Part III Electromechanics and Electric Power Engineering

36	Quarter-Wave Symmetric Space Vector PWM with Low Values of Frequency Modulation Index in Control of Three-Phase Multilevel Voltage Source Inverter	445
36.1	Introduction	445
36.2	Quarter-Wave Symmetric Space Vector PWM	446
36.2.1	Vectors’ Switching Sequence	447
36.2.2	Voltage Space Vector PWM of Two Delta Voltages	449
36.3	MLVSI Load Current’s THD Assessment and Distinction of Amplitude Modulation Index Ranges	454
36.4	Conclusion	456
References		457

37	Analysis of Resource Availability of Production Enterprise Based on Fuzzy Neural Network	459
37.1	Introduction	459
37.2	Literature Review	460
37.3	Methodology for Obtaining Initial Data	460
37.4	Fuzzy Neural Network for Analysis and Prediction	464
37.5	Conclusions	466
References		466
38 Synthesis of Nonlinear Impulse Systems .. 469
Vladislav Shishlakov, Elizaveta Vataeva, Nataliia Reshetnikova,
Dmitriy Shishlakov, and Oksana Solenaya
38.1 Introduction .. 469
38.2 Mathematical Description of the Synthesis Problem 470
38.3 Conclusion ... 475
References ... 476

39 Hidden Markov Model Based on Signals from Blocks
of Semi-Markov System’s Elements and Its Application
for Dynamics Analysis Energy Systems 477
Yuriy Obzherin, Mikhail Nikitin, and Stanislav Sidorov
39.1 Introduction ... 477
39.2 Construction of the Merged Semi-Markov Model 479
39.3 Hidden Markov Model of a Merged Semi-Markov Model
Based on Signals from Blocks of the Elements 481
39.4 Dynamics Analysis and Prediction of the States for the Merged
Semi-Markov Model Based on Signals from Blocks
of the Elements .. 482
39.5 Conclusion ... 485
References ... 485

40 Robot for Inspection and Maintenance of Overhead
Power Lines ... 487
Sergej Solyonyj, Oksana Solenaya, Aleksandr Rysin,
Vladimir Kuzmenko, and Evgeny Kvas
40.1 Introduction ... 487
40.2 Problem Statement .. 488
40.3 Research Results ... 490
40.4 Conclusion ... 494
References ... 496

41 Construction of Land Base Station for UAV Maintenance
Automation ... 499
Igor Lebedev, Anton Ianin, Elizaveta Usina, and Viktor Shulyak
41.1 Introduction ... 500
41.2 Interaction of UAV with Base Station 501
41.3 Base Station for Automated UAV Maintenance 503
41.4 Storage and Positioning Modules of Base Station 505
41.4.1 Retractable Roof ... 505
41.4.2 ArUco-Marker with Backlight 506
41.5 Experiments and Results ... 507
41.6 Conclusion ... 510
References ... 510
42 Combined Capacitive Pressure and Proximity Sensor for Using in Robotic Systems
Konstantin Krestovnikov, Ekaterina Cherskikh, and Eldar Zimuldinov

42.1 Introduction 513
42.2 Related Works 514
42.3 Electrical Circuit and Principle of Operation 517
42.4 Experiments 520
42.5 Conclusion 521
References .. 522

43 Piezoelectric Micropumps for Microrobotics: Operating Modes Simulating and Analysis of the Main Parameters of the Fluid Flow Generation
Ildar Nasibullayev, Oleg Darintsev, Elvira Nasibullaeva, and Dinar Bogdanov

43.1 Introduction 526
43.2 Problem Statement and Basic Equations 528
43.3 Results .. 529
43.4 Conclusion 535
References .. 535

44 Vibration Amplitude and Frequency Parameters of Technological Equipment Drives
Dmitry Ershov and Irina Lukyanenko

44.1 Introduction 537
44.2 Dynamic Model of the Drive 538
44.3 Motor Torque Variance 539
44.4 Vibration Amplitude and Frequency Parameters of Motor Torque 540
44.5 Drive Angular Velocity Variance 542
44.6 Vibration Amplitude and Frequency Parameters of Drive angular Velocity 544
44.7 Conclusion 547
References .. 547

Author Index .. 549
About the Editors

Prof. Andrey Ronzhin is Director of St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) and Head of the Department of Electromechanics and Robotics Systems at St. Petersburg University of Airspace Instrumentation. His research focuses on the interaction of autonomous robotic systems and users in a cyber-physical environment. He is a member of Scientific Board of Robotics and Mechatronics of the Russian Academy of Sciences, the Academy of Navigation and Motion Control, Co-Chairman of International Conference Interactive Collaborative Robotics – ICR. He is Deputy Editor-in-Chief of SPIIRAS Proceedings Journal.

Prof. Vladislav Shishlakov is Vice-Rector for Educational Technologies and Innovative Activities, St. Petersburg State University of Aerospace Instrumentation (SUAI) and Head of the Department of Management in Technical Systems. He is Honorary Worker at the Ministry of Education and Science of the Russian Federation since 2009. His research interests are related to the development of methods of synthesis of nonlinear systems of automatic control systems, which are continuous, and with different types of signal modulation, as well as the development and research of electromechanical and electric power systems and complexes based on the effects of high-temperature superconductivity.
Part I
Keynote Lectures
Chapter 1
Aerial Robots and Infrastructure of Their Working Environment

Vladimir Fetisov

Abstract Aerial robots (also known as UAVs—unmanned aerial vehicles) are increasingly being introduced into our life. Today, we can see aerial robots in agriculture, building industry, delivery services, security and monitoring systems and so on. More frequently not single UAVs but their groups are used. And it would be reasonable to control such groups at all functioning stages, including on-ground maintenance, in automatic mode. Development of infrastructure for automatic service and maintenance of aerial robots has appeared on the agenda of many companies specializing in unmanned aerial systems. Some aspects of such infrastructure creation are discussed in this paper with special emphasis on charging stations for UAVs with electrical propulsion system.

1.1 Introduction: What Is AR, UAV, UAS

In robotics the term “aerial robot” (AR) is known from 1998, when Michelson [1] described a new class of highly intelligent, small flying machines. Now the sense covered under the term AR extends much further. In the field of aviation, robotic flying machines are referred to as “unmanned aerial vehicles” (UAVs), or drones, by simply saying.

Unmanned aerial vehicle (UAV) is defined as a pilotless aircraft, which is flown without a pilot-in-command on-board and is either remotely and fully controlled from another place (ground, another aircraft, ship, space) or programmed and fully autonomous [2].

On the other hand, it is known for the following definition of AR: “An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task” [3]. According to this definition, any contemporary UAV is AR because UAV’s on-board flight controller with embedded navigation equipment...
provides sustainable flight without an operator’s participation. Such minimal on-board intelligence of the robot allows to sustain itself in the air with no human intervention.

So notions of UAV and AR are often considered as equivalent. But in recent years, a new trend has appeared to consider AR as an UAV designed to perform special operations in autonomous mode.

In other words, AR is a big class of mobile robots based on UAV for special tasks that can be performed with different degree of autonomy, i.e., AR has a lot of intelligence and self-sufficiency for its special function implementation. However, the UAV operator, as a rule, can control the AR remotely, switching from automatic to manual mode if the situation requires it.

There are many types of UAVs based on different flight principles. This work deals primarily with the rotary-wing type of aerial vehicles (helicopters, multicopters) and other aircraft (convertiplanes and other hybrids) capable of vertical takeoff and landing (VTOL). VTOL UAVs are the closest to common notion of “robots” because of their capability of hovering, which has huge advantages, in comparison with fixed-wing aircrafts, for general versatility. For example, VTOL UAVs can implement various repairs and building-up operations under the object by means of on-board manipulators. VTOL UAVs are capable of hovering and agile at the same time. Their rich sensory and motor abilities allow them to move and work in very different environments: open skies, confined environments, on the ground, on vertical surfaces, in swarms and near humans [4].

ARs are designed for various useful functions: aerial photography, monitoring, construction operations, agricultural works, delivery of small packages and so on. More and more frequently not single UAVs but their groups are used. And it would be reasonable to control such groups at all functioning stages, including on-ground maintenance, in automatic mode. Development of infrastructure for automatic service and maintenance of ARs have appeared on the agenda of many companies specializing in UAS—unmanned aerial systems (or unmanned aircraft systems). UAS is a widely used notion, which is a more complex term than UAV [5, 6]. UAS comprises one or more UAVs, along with the technical equipment necessary to operate them and other components. Full composition of UAS is shown in Fig. 1.1. When UAVs are considered as ARs, UAS provides an infrastructure for working environment of ARs. Let us take a detailed look at all components of UAS.

1.2 Components of Unmanned Aerial System

1.2.1 Main Functional Means

Main functional means of UAS include all components that are closely connected with flights: UAVs, control station (CS), start and landing equipment, means of transportation, navigation and communication equipment and service stations.
UAVs (ARs). One AR is the minimal number of vehicles in the system. The only UAV in UAS is becoming a rarity. In recent times, groups of ARs are used more and more. Various concepts of UAV group control are known, from centralized control of each vehicle to concepts based on artificial intelligence (AI). Among them, swarm intelligence (SI) occupies a special place. The term was introduced by Beni [7], in the context of cellular robotic systems (CRS). A CRS consists of a large number of robots and operates in n-dimensional cellular space under distributed control. Wide centralized mechanism and synchronous clock are not assumed. Limited communication exists only between adjacent robots. On the one hand, these robots operate autonomously; on the other hand, they cooperate to perform predefined global tasks [8]. SI systems consist of simple agents (ARs) interacting locally with one another and with their environment (Fig. 1.2). SI aerial systems are similar to biological systems. The ARs follow very simple rules, and their operations are local and to a certain degree random. There is no centralized control structure defining how individual agents should behave, but interactions between such agents lead to the appearance of smart global swarm behavior, unknown to the individual agents. Examples of SI in natural systems are ant colonies, bird flocking, hawks hunting, animal herding and