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The 3rd edition of Welding Metallurgy includes updates and expands the 2nd edition that was published in 2003. 
About half of the 3rd edition has new content. It includes the significant new progress made in welding metal-
lurgy since 2003. To help readers understand the subjects discussed, examples are provided in each chapter. To 
make it easier for readers to find cited articles or judge their relevance, the titles of the articles and the full names 
of the journals are provided.

In Part I, Introduction, Chapter 1 has been expanded, which also includes topics on resistance spot welding and 
solid-state welding (friction welding, friction stir welding, explosion welding, magnetic impulse welding, and dif-
fusion welding). Chapter 3 includes the significant effect of metal vapor in the arc on weld penetration. It also 
includes the new progress made at UW-Madison on oscillatory Marangoni flow in the weld pool, weld-pool-sur-
face deformation and oscillation, weld ripple formation, and how they are affected by the surface-active agent. 
Chapter 4 includes two new mechanisms proposed at UW-Madison for spatter in gas–metal arc welding of Al and 
Mg alloys.

Part II, The Fusion Zone, has been restructured and expanded to include four new chapters: Chapters 10, 11, 12, 
and 14. Ternary alloy solidification, which is often difficult for students to understand, has been explained with the 
liquidus projections and solidification paths of example alloys. Part II discusses more on the following new progress 
made at UW-Madison. A liquid-metal quenching technique to “freeze-in” and reveal the elevated temperature 
microstructure during welding is demonstrated, which is useful for understanding phase transformations, nuclea-
tion mechanisms, microsegregation, diffusion, etc. Bending of growing columnar dendrites without breaking is 
shown to support thermal instead of mechanical, dendrite fragmentation. Identification of the grain refining mech-
anism is demonstrated. A statistically significant measurement of microsegregation used in casting is applied to 
welding. Base-metal-like “beaches,” “peninsulas,” and “islands” surrounded by the weld metal, often found in 
dissimilar filler welding and dissimilar metal welding, is explained. A simple index is proposed to predict the solidi-
fication cracking susceptibility of Al and Mg alloys and how effectively filler metals can reduce the susceptibility. 
A simple but improved new test for evaluating the solidification cracking susceptibility of various alloys and the 
filler metal effectiveness is demonstrated. New theories on the resistance of austenitic stainless steels to solidifica-
tion cracking and ductility-dip cracking are presented.

Part III, The Partially Melted Zone, also discusses more on the new progress made at UW-Madison, including 
liquation (liquid formation) and liquation-induced cracking. A simple criterion is proposed to predict how filler 
metals can be selected in arc welding to eliminate liquation cracking. Evidence of liquation and liquation cracking 
in friction stir welding (FSW) is presented. In Al-to-Mg butt and lap FSW, the interesting and significant effect of 
the position of Al relative to Mg on the joint strength is explained. Interestingly, liquid droplets have been shown 
even though FSW is considered as solid-state welding.

Part IV, The Heat-Affected Zone (HAZ), has been reorganized into the following new chapters: Chapters 17, 18, 
19, and 20.
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Part V, Special Topics, is a new chapter. It has been added to introduce some topics of high current interest, such 
as Chapters 21–24. Chapters 23 and 24, and several sections in Chapter 22 discuss heavily on the new progress at 
UW-Madison.
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This chapter is intended to be a brief introduction to most fusion welding processes and some solid-state welding 
processes. The former includes gas welding, arc welding, laser-beam welding, electron-beam welding, and resist-
ance spot welding (RSW). The latter includes friction stir welding (FSW), friction welding, explosion welding 
(EXW), magnetic pulse welding (MPW), and diffusion welding. The advantages and disadvantages of these 
processes are discussed.

1.1  Overview

1.1.1  Fusion Welding Processes

Fusion welding is a joining process that uses fusion of the base metal to make the weld. It is the most widely used 
joining process. Four major types of fusion welding processes will be discussed: gas welding, arc welding, high-
energy beam welding, and resistance spot welding. These processes are listed as follows:

(a)	 Gas welding:
Oxyacetylene welding (OAW)

(b)	 Arc welding:
Shielded metal arc welding (SMAW)
Gas−tungsten arc welding (GTAW)
Plasma arc welding (PAW)
Gas−metal arc welding (GMAW)
Flux-cored arc welding (FCAW)
Submerged arc welding (SAW)
Electroslag welding (ESW)

(c)	 High-energy beam welding:
Electron beam welding (EBW)
Laser beam welding (LBW)

(d)	 Resistance spot welding:
Resistance spot welding (RSW)

There is no arc in ESW except during initiation of the process. For convenience of discussion, however, it is 
grouped with arc welding processes.

1
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1.1.1.1  Power Density of Heat Source
In fusion welding except for RSW, the power density is the power of the heat source divided by its cross-sectional 
area at the workpiece surface. Consider directing a 1.5-kW hair drier very closely to a 304 stainless steel sheet 
0.25 mm thick. Obviously, the power spreads out over an area of roughly 50 mm diameter or greater, and the sheet 
just heats up gradually but will not melt. With GTAW at 1.5 kW, however, the arc can concentrate on a small area 
of about 5 mm diameter and can produce a weld pool. This example illustrates the importance of the power den-
sity of the heat source in welding.

As shown schematically in Figure 1.1, the size of the heat source increases from high-energy beam welding to arc 
welding and to gas welding. The power density of the heat source and hence its ability to melt and weld deep 
decrease in the same order. As shown in Figure 1.2, as the power density of the heat source increases, the amount of 
heat absorbed by the workpiece before welding is completed decreases. A gas flame tends to heat up the workpiece 
so slowly that, before any melting occurs, a large amount of heat is already conducted away into the bulk workpiece. 
Excessive heating can damage the workpiece, weakening and distorting it. Contrarily, the same material heated by a 

Figure 1.1  The size of the heat source and its effect on welding.

Figure 1.2  Heating of and hence damage to workpiece vs. power density of heat source.
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sharply focused electron or laser beam can melt or even vaporize to form a deep keyhole instantaneously. This allows 
welding to be completed before much heat is conducted away into the bulk workpiece to cause any damage [1].

Therefore, the advantages of increasing the power density of the heat source include deeper weld penetration, 
higher welding speed, and better weld quality with less damage to the workpiece, as indicated in Figure  1.2. 
Figure 1.3 shows that the weld strength (of aluminum alloys) increases as the heat input per unit length of the 
weld per unit thickness of the workpiece decreases [2]. Figure 1.4a shows that the angular distortion of the work-
piece is much smaller in EBW than in GTAW [2]. Unfortunately, as shown in Figure 1.4b, the costs of laser and 
EBW machines are very high [2]. This higher equipment cost is also shown in Figure 1.2.

1.1.1.2  Welding Processes and Materials
Table 1.1 summarizes the fusion welding processes recommended for carbon steels, low-alloy steels, stainless 
steels, cast irons, nickel-base alloys, and aluminum alloys [3]. For one example, GMAW can be used for all the 

Figure 1.3  Variation of weld strength with heat input per unit 
length of weld per unit thickness of workpiece. Source: Mendez and 
Eagar [2]. © ASM.
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Figure 1.4  Comparisons between welding processes: (a) angular distortion; (b) capital equipment cost. 
Source: Mendez and Eagar [2]. © ASM.




