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Chapter 1 ®
Overview et

Abstract The dynamical evolution of conservative chaotic systems is not determin-
istic because it is not possible to follow their dynamical evolution with any precision
for more than a short time. In quantum systems, signatures of chaos emerge when
classical chaos occupies phase space volumes greater than £ (7 is Planck’s constant
and d is number of degrees of freedom).

The phase space of most conservative nonlinear systems with three or more
degrees of freedom (with a few exceptions) is permeated by an Arnol’d web
consisting of a fractal set of nonlinear resonances that fill the phase space. The
Arnol’d web is the source of the chaos that causes thermalization of both classical
and quantum systems.

The publication of Newton’s Principia in 1686 and the success and power of
Newton’s laws led to the huge growth in science that we see today. Belief that
Newtonian mechanics is deterministic was shaken by the work of Poincaré who
showed that perturbation expansions must diverge due to nonlinear resonances,
making it impossible to make long-time predictions. When chaos manifests itself
in quantum systems, the information content of a quantum system is extremized
(minimized). In this book, we examine in more detail the mechanisms by which
chaos emerges in conservative classical and quantum systems.

Keywords Classical chaos - Quantum manifestations of chaos - Determinism -
History of dynamics - Symmetries - Perturbation theory divergence - KAM tori -
Nonlinear resonance - Renormalization theory - Random matrix theory - Path
integrals

1.1 Introduction

The existence of chaos in a conservative classical system means that the dynamical
evolution of the system is no longer deterministic. Most classical systems with three
or more degrees of freedom are either fully chaotic or have fractal regions of chaos
distributed throughout the phase space. For example, the solar system appears to
have regions where planetary motion is chaotic. Classical models of molecular
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2 1 Overview

motion often show large regions of chaos. Hard sphere gases are rigorously chaotic.
The foundations of statistical mechanics (and thermodynamics) are based on the
assumption that the underlying dynamics is chaotic.

The term quantum chaos refers to the signatures of classical chaos in the quantum
dynamics of particles whose classical limit is chaotic. The quantum signatures of
chaos appear wherever the classically chaotic regions have a size equal to A9 in
phase space, where /i is Planck’s constant and d is the number of degrees of freedom.
Signatures of chaos occur, for some parameter ranges, in most quantum systems and
determine if a quantum system can thermalize. The signatures of chaos can be used
to control quantum transitions. They can also destabilize quantum systems. In fact,
the deeper we look into the fundamental dynamics governing the world, the more
we see the profound impact of chaotic behavior.

The phase space of all conservative nonlinear systems with three or more degrees
of freedom (with a few exceptions) forms an Arnol’d web (Arnol’d 1963). An
Arnol’d web consists of a fractal set of resonances and chaos that fill the phase
space. Depending on the degree of development of the web, an initial condition
(one that is not known to infinite precision), may evolve deterministically for a long
but finite period of time, or may begin to exhibit random behavior after a short
time. The ubiquitous Arnol’d web, in conservative dynamical systems, provides the
mechanism to thermalize the world.

In this regard, one of the important discoveries in quantum physics in recent
years is that the information content of conservative quantum systems is extremized
(minimized) when the underlying classical system undergoes a transition to chaos.
The information content of the conservative quantum system approaches that of a
system whose dynamics is governed by a random Hamiltonian matrix that is chosen
to minimize information content.

In subsequent, sections we will first give a brief historical overview of the history
of conservative dynamics and chaos theory. Then we will describe the content of the
remaining chapters of this book.

1.2 Historical Overview

On April 28, 1686 the first of the three books that comprise Newton’s Principia was
formally presented to the Royal Society and, by July 1687 the complete first edition
(consisting of perhaps 300 copies) was published Newton (1686). The publication
of this work was probably the most important single event in the history of science
because it formulated the science of mechanics in terms of just three basic laws:

* A body maintains its state of rest or uniform velocity unless a net force acts on it.
e The time rate of change of momentum, p, is equal to the net force, F, acting on it.
e To every action there is an equal and opposite reaction.

In the Principia, Newton not only wrote the three laws but also gave a systematic
mathematical framework for exploring the implications of these laws. In addition,
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in the Principia Newton proposed his universal inverse square law of gravitation. He
then used it to derive Kepler’s empirical laws of planetary motion, to account for the
motion of the moon and the phenomenon of tides, to explain the precession of the
equinoxes, and to account for the behavior of falling bodies in Earth’s gravitational
field.

The success and power of Newton’s laws led to a great optimism about our
ability to predict the behavior of mechanical objects and, as a consequence, led
to the huge growth in science that we see today. In addition, it was accompanied
by a deterministic view of nature that is perhaps best exemplified in the writings of
Laplace. In his Philosophical Essay on Probabilities, Laplace states (Laplace 1951):
Given for one instant an intelligence which could comprehend all the forces by
which nature is animated and the respective situation of the beings who compose it—
an intelligence sufficiently vast to submit these data to analysis—it would embrace
in the same formula the movements of the greatest bodies of the universe and those
of the lightest atom. For it, nothing would be uncertain and the future, as the past,
would be present before its eyes.

This deterministic view of nature was completely natural, given the success of
Newtonian mechanics, and it persists up until the present day. Newton’s three laws
of motion led to a description of the motion of point masses in terms of a set of
coupled second-order differential equations. The theory of extended objects can be
derived from Newton’s laws by treating them as collections of point masses. If we
can specify the initial velocities and positions of the point particles, then Newton’s
equations for the point particles (obtained from the second law) should determine all
past and future motion. However, we now know that the assumption that Newton’s
equations can predict the future is a fallacy. Newton’s equations are, of course, the
correct starting point of mechanics, but in general, they only allow us to determine
the long-time behavior of integrable mechanical systems, few of which can be found
in nature. Newton’s laws, for most systems, describe inherently random behavior
and cannot determine the future evolution of any real system (except for very short
times) in more than a probabilistic sense.

The belief that Newtonian mechanics is a basis for determinism was formally
laid to rest by Sir Lighthill (1986) in a lecture to the Royal Society on the three-
hundredth anniversary of Newton’s Principia. In his lecture, Lighthill says ... [
speak ... once again on behalf of the broad global fraternity of practitioners
of mechanics. We are all deeply conscious today that the enthusiasm of our
forebears for the marvelous achievements of Newtonian mechanics led them to
make generalizations in this area of predictability which, indeed, we may have
generally tended to believe before 1960, but which we now recognize were false.
We collectively wish to apologize for having misled the general educated public
by spreading ideas about the determinism of systems satisfying Newton’s laws of
motion that, after 1960, were to be proved incorrect . ...

In a sense, Newton (and Western science) were fortunate because the solar system
has amazingly regular behavior considering its complexity, and one can predict its
short-time behavior with fairly good accuracy. Part of the reason for this is the
fact that the two-body Kepler system is governed by symmetries, both space-time
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and hidden, and is integrable. A three body gravitational system is not integrable.
Newton’s derivation of Kepler’s laws was based on the properties of the two-body
system. However, the dynamical interactions of the many bodies that comprise the
solar system lead to deviations from the predictions of Kepler’s laws, and lead one
to ask why the solar system is, in fact, so regular. Is the solar system stable (Moser
1975)? Will it maintain its present configuration into the future? These questions
have not yet been fully answered.

Questions concerning the stability and the future evolution of the solar system
have occupied scientists and mathematicians for the past 300 years. Until computers
were invented, all mathematical theories used perturbation expansions of various
types. In the eighteenth century, important contributions were made by Euler,
Lagrange, and Laplace on predicting the change in the geometry of orbits due to
small perturbations and on determining the overall stability of orbits. In addition,
Lagrange (1889) reformulated Newtonian mechanics in terms of a variational
principle that vastly extended our ability to analyze the behavior of dynamical
systems and allowed a straight-forward extension to continuum mechanics.

In the nineteenth century, there were two very important pieces of work that
laid the groundwork for our current view of mechanics. Hamilton reformulated
mechanics (Hamilton 1940) so that the dynamics of a mechanical system could
be described in terms of a momentum-position phase space rather than a velocity-
position phase space as is the case for the Lagrangian formulation. This step is
extremely important because in the Hamiltonian formulation (which describes the
evolution of mechanical systems in terms of coupled first-order differential equa-
tions) the flow of trajectories in phase space is volume-preserving. Furthermore, if
symmetries exist (such as the space-time symmetries), then some of the generalized
momenta of the system may be conserved, thus reducing the dimension of the phase
space in which we must work.

The relation between the symmetries of a system and conservation laws was first
clarified by Noether (1918). Noether’s work provides one of the most important
tools of twentieth-century science, because the key to much of what we are
able to predict in science is symmetry. Symmetries imply conservation laws, and
conservation laws give conservative classical mechanics and quantum mechanics
whatever predictive power they have. Conservation laws are even responsible for
the existence of thermodynamics and hydrodynamics.

Another extremely important piece of work in the nineteenth century was due
to Poincaré (1899). Poincaré not only closed the door on an era but created the
first crack in the facade of determinism. Before Poincaré, most work on dynamics,
subsequent to Newton, involved computation of deviations from Kepler-type orbits
for two massive bodies that are perturbed by a third body. The idea was to take a
Kepler orbit as a first approximation and then compute successive corrections to it
using perturbation theory. One must then show that the perturbation expansions thus
obtained converge.

The problem of whether or not perturbation series converge was so important that
it was the subject of a prize question posed by King Oscar II of Sweden in 1885. The
question read as follows: For an arbitrary system of mass points which attract each
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other according to Newton’s laws, assuming that no two points ever collide, give the
coordinates of the individual points for all time as the sum of a uniformly convergent
series whose terms are made up of known functions (Moser 1975). Poincaré entered
the contest and won the prize by showing that such series could be expected to
diverge because of small denominators caused by internal resonances.

We now know that resonances, that give rise to these small divisors, are
associated with the onset of chaos. Because of these divergences, it appears to be
impossible to make long-time predictions concerning the evolution of mechanical
systems (with a few exceptions such as the two-body Kepler system) using
perturbation expansions.

No further progress was made on the problem of long-time prediction in
mechanics until 1954 when Kolmogorov (1954) outlined a proof, for systems of the
type proposed in King Oscar’s question, that a majority of the trajectories are quasi-
periodic and can be described in terms of a special type of perturbation expansion.
In 1962, Arnol’d (1963) constructed a formal proof of Kolmogorov’s results for
a three-body system with an analytic Hamiltonian, and Moser (1968) obtained a
similar result for twist maps. The result of the work of Kolmogorov, Arnol’d, and
Moser (KAM) is that series expansions describing the motion of some orbits in
many-body systems are convergent, provided the natural frequencies associated
with these orbits are not close to resonance. The work of Arnol’d, also showed
that nonintegrable systems, with three or more degrees of freedom, are intrinsically
unstable. They contain a dense web of resonance lines, the Arnol’d web, that allows
diffusion to occur throughout the available phase space. The question of how rapid
the diffusion will be depends on the parameters of the system.

Shenker and Kadanoff (1982) and MacKay (1983) were able to show that at the
parameter value at which a given KAM torus (with quadratic irrational winding
number) is destroyed, the rational approximates have self-similar structure and
the areas in phase space that they occupy are related by scaling laws. They also
showed that the rational approximates play a dominant role in the destruction of
KAM tori. Escande and Doveil (1981) developed a renormalization theory for the
destruction of KAM tori directly from the Hamiltonian for systems with two degrees
of freedom. Thus, Hamiltonian systems, much like equilibrium systems near a phase
transition, can exhibit self-similar structure.

Much of the behavior that occurs in classical systems also occurs in their
quantum counterpart. However, because of the Heisenberg uncertainty relations,
we are forced to describe classical and quantum systems from quite different
perspectives. In classical systems, we can examine the evolution of individual orbits
in phase space, and we can see directly the chaotic flow of trajectories in phase
space. If we were to describe the evolution of the classical system in terms of the
probability distribution in phase space, using the Liouville equation, we would have
to search for the signatures of chaos in the behavior of the probability distributions
and eigenvalues of the Liouville operator. This has been done for very simple chaotic
maps (Driebe 1999), but it is a formidable task when dealing with Newtonian
mechanical systems with two or more degrees of freedom.



6 1 Overview

When we study quantum systems, we have no phase space in which to describe
the evolution of individual orbits because of the Heisenberg uncertainty relations.
A single quantum state occupies volume of order A< in the classical phase space,
where 7 is Planck’s constant and d is the number of degrees of freedom. We are
forced from the outset to study quantum systems at the level of a linear probability
(probability amplitude to be more precise) equation, namely the Schrédinger
equation.

Most of the mechanisms at work in nonlinear classical systems are also at
work in their quantum counterparts. For example, nonlinear resonances exist in
quantum systems and can destroy constants of the motion (good quantum numbers)
in local regions of the Hilbert space. They form self-similar structures, but only
down to scales of order 7% and not to infinitely small scales as they do in classical
systems. However, because the Schrodinger equation is an equation for probability
amplitudes rather than probabilities, we will find some new phenomena that can
occur in quantum systems but not in classical systems.

One of the most important discoveries of quantum chaos theory is that the
statistical properties of energy spectra and scattering delay times indicate that the
information content of a quantum system is extremized (minimized) as its classical
counterpart undergoes a transition to chaos. The idea of studying the spectral
statistics of quantum systems is largely due to Wigner (1951, 1957), who in the
1950s analyzed the statistical properties of nuclear scattering resonances. It was
found that the nearest neighbor spacing of scattering resonances, for some nuclear
scattering processes, has a distribution that agrees with the distribution of spacings
of eigenvalues of ensembles of random Hermitian matrices (the Gaussian ensemble)
whose matrix elements extremize information. The work of Wigner led Dyson
(1962) to study the statistical properties of ensembles of random unitary matrices
(the circular ensembles) that extremize information.

The connection between chaos theory and random matrix theory was made in
1979 by McDonald and Kaufman (1979), who found that classically chaotic quan-
tum billiards have spectral spacing distributions given by the Gaussian ensembles.
Comparison between statistical properties of deterministic quantum systems with
underlying classical chaos and predictions of random matrix theories that extremize
information is now a standard tool of quantum mechanics.

In the early days of quantum mechanics, before the work of Heisenberg and
Schrodinger, the quantum version of a classical system was obtained by quantizing
the action variables. This is straightforward if the classical system is integrable and
one can find the action variables. However, Einstein, who knew of the work of
Poincaré, as early as 1917 (Einstein 1917) pointed out that there may be difficulties
with this method of quantization if invariant tori do not exist in the classical phase
space, as is the case with chaotic systems.

Indeed, until the work of Gutzwiller in the early 1980s (Gutzwiller 1982), there
was no way to link classically chaotic systems to their quantum counterparts.
However, Gutzwiller showed that Feynman path integrals, in the semiclassical limit,
provide such a link, and the spectral properties of a quantum system, whose classical
counterpart is chaotic are determined largely in terms of an infinite sum over the
unstable periodic orbits of the classical system.
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Probably the most widely studied systems, as regards to the transition to chaos,
are systems driven by time-periodic external fields. With a time-periodic force,
one can cause a nonlinear system, with only one degree of freedom, to undergo
a transition to chaos. In such systems, energy is not conserved but due to a discrete
time translation invariance, the Floquet energy (quasi-energy) is conserved. Thus
all the techniques used in energy-conserving systems can be applied to these driven
systems.

1.3 Plan of the Book

The goal of this book is to provide a thorough grounding in classical and quantum
chaos theory, with the focus on topics that impact current and future research topics.

Chapters 2-5 provide a description of processes underlying chaotic classical
dynamics in conservative systems. Chapter 2 lays the foundations of the relevant
classical mechanics for understanding chaos, and focuses on those aspects of chaotic
behavior that will be used throughout the remainder of the book.

Chapter 3 deals primarily with systems that have two degrees of freedom. For
these systems it is possible to visualize the processes that lead to the onset of chaos,
because one can construct area preserving maps to follow the process. In Chap. 3,
we also focus on the fractal nature of structures in the phase space that lead to global
chaos, as parameters of the system are changed.

Chapter 4 deals with classical scattering processes and the fractal nature of
scattering dynamics, when the scatterer is chaotic or partially chaotic. Finally,
Chap. 5 focuses on the Arnold web that exists in nonlinear, non-integrable systems
with three of more degrees of freedom. The Arnol’d web provides the mechanism
for the global transition to chaos in systems with three or more degrees of freedom.

The remaining chapters of the book, Chaps. 6-10, examine the quantum mani-
festations of chaos. We start in Chap. 6 with a discussion of random matrix theory,
as applied to conservative Hamiltonian systems. Random matrix theory is based
on the assumption that the matrix elements of a hermitian or unitary matrix are
independent random variables. This implies certain behaviors of the eigenvalues and
eigenvectors of such systems that have been observed in quantum systems whose
classical counterpart is chaotic. As we also show in Chap. 6, a conservative quantum
system that shows random matrix-like behavior has become thermalized.

In Chap. 7, we discuss the behavior of some bounded quantum systems whose
classical counterparts undergo a transition to chaos. The Schrodinger equation for
these systems is linear. Nonlinearities appear in the Hamiltonian. We consider
chaotic billiards, spin systems, and small molecules which are anharmonic oscil-
lators. A number of the results we describe have been realized in microwave cavity
experiments.

The connection between the quantum manifestations of chaos and random matrix
theory was first observed in nuclear scattering experiments. In Chap. 8, we describe
the theory originally developed by Wigner and Eisenbud (W-E) 1947 that allowed
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analysis of nuclear scattering processes in terms of random matrix theory. We then
use these tools to define scattering phenomena such as resonance, quasibound states,
and delay times for scattering processes. Finally, in Chap. 8, we show a variety of
experimental and numerical data on nuclear and molecular energy-level sequences
and show that these systems are exhibiting the manifestations of chaos.

Another connection between classically chaotic systems and their quantum
counterpart involves the use of semiclassical path integrals. In Chap. 9, we use the
semiclassical limit of Feynman path integrals to derive the Gutzwiller trace formula,
which expresses the trace of the Green’s function of a quantum system in terms of
periodic orbits of the classical system. We show that the trace formula gives very
good results for the energy levels of the anisotropic Kepler system, a classically
chaotic system. Finally, we conclude Chap.9 with a numerical and experimental
study of the influence of periodic orbits on the absorption spectrum of diamagnetic
hydrogen.

Chapter 10 is devoted to periodically driven quantum systems, which can be
described using Floquet theory. We show that nonlinear resonances exist in the
Hilbert space of quantum systems, and we use Floquet theory to interpret the
results of dynamic tunneling experiments using cold atoms confined to optical
lattices. We decribe the behavior of the quantum delta-kicked rotor, which was
the first system in which dynamic Anderson localization was observed numericaly.
We also describe extensive experiments on microwave-driven hydrogen that give
experimental confirmation of the existence of higher-order nonlinear resonances
in quantum systems. Finally, we show that the Arnol’d web exists in quantum
systems and plays an important role in destablizing their dynamics, and we show
the influence of chaos on quantum control.

This book contains several appendices that give background on subjects of
importance to this book. For example, there is a review of the effect of symmetries
on the structure of Hamiltonian matrices. There is a derivation of the measures for
Hermitian and unitary matrices used in random matrix theory. There is a derivation
of the normalization constants and expressions for probability distributions of the
Gaussian and circular ensembles in terms of quaternion matrices. There are other
appendices as well that will aid the reader with some of the theory concepts in this
book.

We do not have room in this book to discuss in detail all of the interesting
applications of classical and quantum chaos theory, so in the concluding section
of each chapter we have given references to additional topics of interest.
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Chapter 2 ®
Fundamental Concepts Qs

Abstract The dynamical behavior of nonlinear conservative systems is deter-
mined by global and hidden symmetries that constrain dynamical flow to lower-
dimensional surfaces in the phase space. When the number of global symmetries
equals the number of degrees of freedom, the dynamical system is integrable. This
rarely happens,

Symmetry-breaking terms added to a Hamiltonian cause nonlinear resonances
to occur on all scales in the phase space and give rise to a fractal structuring of
the phase space. Chaos appears in the neighborhood of the nonlinear resonances.
The Poincaré surfaces of section provide a numerical tool for testing integrability of
conservative dynamical systems. Non-linear resonances may appear or disappear as
mparameters of the system are varied and the overlap of nonlinear resonances leads
to the onset of chaos.

Kolmogorov, Arnol’d, and Moser (collectively called KAM) developed a rapidly
converging perturbation theory that describes non-resonant regions of the phase
space. In chaotic regions of the phase space, neighboring orbits move apart
exponentially in any direction. The rate of exponential divergence of pairs of orbits
is given by Lyapounov exponents. Systems with positive Lyapounov exponents also
have positive KS metric entropy.

Keywords Noether’s theorem - Integrability - Global symmetries - Hidden
symmetries - KAM tori - Poincaré surface of section - Nonlinear resonance -
Definition of chaos - Lyapounov exponents - Baker’s transformation

2.1 Introduction

The dynamical behavior of nonlinear conservative systems is determined by the
nature of the symmetries that govern their behavior. These dynamical symmetries
can be categorized as global symmetries or hidden symmetries. Both types of
symmetry constrain the dynamical flow of the system to lower-dimensional surfaces
in the phase space. Global symmetries are related to the space-time symmetries
of the system. The other symmetries do not have an obvious source and were
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first called hidden symmetries by Moser (1979). When there are as many global
symmetries as numbers of degrees of freedom, the dynamical system is said to be
integrable.

A second concept that is important for understanding the dynamics of nonlinear
systems is nonlinear resonance. As Kolmogorov (1954), Arnol’d (1963), and
Moser (1962) have shown, when a small symmetry-breaking term is added to
the Hamiltonian of system, most of the phase space continues to behave as if
the symmetries still exist. However, in regions where the symmetry-breaking term
allows resonance to occur between otherwise uncoupled degrees of freedom, the
dynamics begins to change its character. When resonances do occur, they generally
occur on all scales in the phase space and give rise to a fractal structuring of the
phase space.

The third concept that is essential for understanding conservative nonlinear
dynamics is chaos or sensitive dependence on initial conditions. For the class of
systems in which symmetries can be broken by adding small symmetry-breaking
terms, chaos first appears in the neighborhood of the nonlinear resonances. As the
strength of the symmetry-breaking term increases and the size of the resonance
regions increases, ever larger regions of the phase space become chaotic.

The dynamical evolution of systems with broken symmetry cannot be determined
using conventional perturbation theory, because of the existence of nonlinear
resonances. In Sect.2.2, we show that nonlinear resonances cause a topological
change locally in the structure of the phase space, and that conventional perturbation
theory is not adequate to deal with such topological changes.

In Sect. 2.3, we introduce the concept of integrability. A system is integrable if it
has as many global constants of the motion as degrees of freedom. The connection
between global symmetries and global constants of motion was first proven for
dynamical systems by Noether (1918). We will give a simple derivation of Noether’s
theorem in Sect. 2.3.

It is usually impossible to tell if a system is integrable just by looking at the
equations of motion. As we show in Sect.2.4, the Poincaré surface of section
provides a very useful numerical tool for testing integrability and will be used
throughout the remainder of this book. We will illustrate the use of the Poincaré
surface of section for the classic model of Henon and Heiles (1964) and for a model
of the HOCI molecule.

In Sect.2.5, we introduce the concept of nonlinear resonances and illustrate
their behavior for some simple models originally introduced by Walker and Ford
(1969). These models are interesting because they show that resonances may appear
or disappear as parameters of the system are varied and the overlap of nonlinear
resonances leads to the onset of chaos.

Conventional perturbation theory does not work when nonlinear resonances are
present. But Kolmogorov, Arnol’d, and Moser (collectively called KAM) have
developed a rapidly converging perturbation theory that can be used to describe
non-resonant regions of the phase space, precisely because it is constructed to avoid
the resonance regions. KAM perturbation theory will be described in Sect. 2.6.
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In practice, chaos is defined in terms of the dynamical behavior of pairs of
orbits that initially are close together in the phase space. If the orbits move apart
exponentially in any direction in the phase space, the flow is said to be chaotic.
The rate of exponential divergence of pairs of orbits is measured by the so-called
Lyapounov exponents. There will be one such exponent for each dimension in the
phase space. If all the Lyapounov exponents are zero, the dynamical flow is regular.
If even one exponent is positive, the flow will be chaotic. A detailed discussion of the
behavior of Lyapounov exponents for conservative systems is given in Sect. 2.7 and
is illustrated in terms of the Henon-Heiles system. Systems with positive Lyapounov
exponents also have positive KS metric entropy. The KS metric entropy is defined
in Sect. 2.7 and computed for the baker’s transformation, one of the simplest known
chaotic dynamical systems.

Finally, in Sect. 2.8, we make some concluding remarks.

2.2 Conventional Perturbation Theory

Historically the first cracks in a deterministic view of the world, and an appreciation
of the difficulties in obtaining long-time predictions regarding the evolution of
dynamical systems, were brought into focus with Poincaré’s proof that conventional
perturbation expansions generally diverge. When they diverge they cannot be used
as a tool to provide long-time predictions.

In order to build some intuition concerning the origin of these divergences, let us
consider a 2 DoF system from celestial mechanics, the relative motion of a moon of
mass m1, orbiting a planet of mass m (the Kepler system). The Hamiltonian can be
written

Pr2 p¢2 k

Hy = ——=E, 2.1
0 2u+2,ur2 r @D

where (p;, py) and (r, ¢) are the relative momentum and positions, respectively, of
the two bodies in polar coordinates, E is the total energy of the system, u = HZ”IIT"ZZ
is the reduced mass, and k = Gmm (G is the gravitational constant). The total
angular momentum, L, is conserved for this problem so the plane of motion, (r, ¢),
is taken to lie in the plane perpendicular to L.

After a canonical transformation from coordinates (p,, pg, r, ¢) to action-angle

coordinates (Ji, J, 61, 03), the Hamiltonian takes the form (Goldstein 1980)

—uk?
Ho(J1 ) = —M _ _E. 2.2)
2(J1 + 1)?

The motion is fairly complicated (elliptic or hyperbolic orbits) in terms of coordi-

nates (py, pg, I, ), butin terms of action-angle coordinates it is simple. Hamilton’s

equations of motion yield % = —% = 0 and % = % = w;(J1, J»), where
1 1
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Fig. 2.1 For integrable systems with two DoF, each trajectory lies on a torus constructed from
the action-angle variables (Ji, J2, 01, 6»). The radii of the torus are p; = V2J; fori = (1,2).
If the frequencies w; = ! (i = 1,2) are commensurate, the trajectory will be periodic. If the
frequencies are incommensurate, the trajectory will never repeat

i = (1,2) and ¢ is the time. Thus, we find that J; = ¢; and 6; = w;t + d;, where ¢;
and d; are constants determined by the initial conditions. We see immediately that
the energy of this system is constant.

It is useful to picture the motion of this system as lying on a torus as shown in
Fig.2.1. The torus will have two constant radii, which we define as p; = 4/2J; for
i = (1, 2), and two angular variables (01, 62). A single orbit of the Kepler system
will evolve on this torus according to equations J; = ¢; and 6; = w;t + d;, so there
are two frequencies associated with this system, w; and w». If these two frequencies
are commensurate (that is, if mw| = nwy, where m and n are integers), then the
trajectory will be periodic and the orbit will repeat itself. If the two frequencies
are incommensurate (irrational multiples of one another), then the trajectory will
never repeat itself as it moves around the torus and eventually will cover the entire
surface of the torus. Note also that the frequencies themselves depend on the action
variables and therefore on the energy of the system. This is a characteristic feature
of a nonlinear system.

Let us now assume that a perturbation acts in the plane of motion due to the
presence of another planet. We shall treat this perturbation as an external field. In
the presence of this perturbation, the Hamiltonian will take the form

H = Hy(J1, o) + €V (J1, 2,61, 02), (2.3)

where € is a small parameter, € << 1. We wish to find corrections to the unperturbed
trajectories, J; = c;, due to the perturbation. Since we cannot solve the new
equations of motion exactly, we can hope to obtain approximate solutions using
perturbation expansions in the small parameter €. Let’s try it.

First we note that since we are dealing with periodic bound state motion, we can
expand the perturbation in a Fourier series, and write the Hamiltonian in Eq. (2.3)
in the form

oo oo

H=Hy(Ji.2)+e Y Y Vayny(i, J2)cos(nifr + nath). (2.4)

n|=—00ny=—00
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Next, we introduce a generating function, G( 71, J>, 61, 6»2), which we define as
GIJ1,92,01,02) = J161 +J202

e > > gumy (T T sin(mit +nab). (2.5

n|=—00 ny=—00

where g,, ., will be determined below. The generating function in Eq.(2.5)
generates a canonical transformation from the set of action-angle variables,
(J1, J2, 01, 02), to a new set of canonical action-angle variables, (J7, J>, ®1, ©7),
via the following equations:

G

Ji= g =Jite Z Z M 8nymy COS(M101 + 1262) (2.6)
ny=—00 np=—00
and
@ = 29 =6 +e¢ Z Z oML Gin (16 + 1262). 2.7)
i 8j = ni1oi nyth .

n|=—0o0 np=—0o0

The new Hamiltonian, H'(J7, >, ®1, ©2), is obtained from Eq. (2.4) by solving
Egs. (2.6) and (2.7) for (J;, ;) as a function of (J;, ®;) and plugging into Eq. (2.4).
If we do that and then expand H'(J, 9>, ©1, ©7) in a Taylor series in the small
parameter €, we find

H'(J1, 92, ©1, 02)

o0 o
= Hy(J1,.J2) + € Z Z (n1w1 + n2w2) gny n, CO8(N1 O] + n207)

n|=—00 ny=—00

e D D Vum T T cos(m1O1 +ma@s) + 0(€%),  (2.8)

n|=—00 ny=—00

’

. dH,
where the frequencies are defined as w; = a_f
i .
We can now remove terms of order € by choosing

an ng(jlsJZ)
= 2.9
S (njw1 + nyws) @9

Then

H'(J1, T2, 01, 02) = H)(J1, T2) + O(€%) (2.10)
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and

o0 o0
ni Vi np €08(n101 + n203) >
Ji =9 — 0] . 2.11
i =Ji-e Z Z (njw1 + naw2) + O @11)

nj=—00n;=—00
To lowest order in €, this is the solution to the problem. New actions, J;, have
been obtained that contain corrections due to the perturbation. If, for example, € =
0.01, then by retaining only first-order corrections, we neglect terms of order €2 =
0.0001. To first order in €, J; is a constant and ®; varies linearly in time. At least,
this is the hope. However, there is a catch! For the expansion in Eq. (2.11) to have
meaning, we must have

[n1wi + nawa| > €Vyy n,. 2.12)

However, the condition in Eq.(2.12) breaks down when internal nonlinear reso-
nances occur and causes the perturbation expansion to diverge. Poincaré showed
that perturbation expansions of this type can generally be expected to diverge and
therefore, cannot be used for long-time predictions.

2.3 Integrable Systems

Integrable systems form an important reference point when discussing the behavior
of dynamical systems. We define an integrable system as follows. Consider a
dynamical system with N degrees of freedom. Its phase space has 2N dimensions.
The system is integrable if there exist N independent isolating integrals of motion,
I;, such that

Li(p1, ... PN q1, - qN) = Ci, (2.13)

for i = 1, ..., N, where C; is a constant and p; and ¢; are the canonical
momentum and position associated with the ith degree of freedom. The functions I;
are independent if their differentials, dI;, are linearly independent.

It is important to distinguish between isolating and non-isolating integrals
(Wintner 1947). Non-isolating integrals (an example is the initial coordinates of
a trajectory) generally vary from trajectory to trajectory and usually do not provide
useful information about a system. On the other hand, isolating integrals of motion,
by Noether’s theorem, are due to symmetries (some “hidden”) of the dynamical
system and define surfaces in phase space.

The condition for integrability may be put in another form. A classical system
with N degrees of freedom is integrable if there exist N independent globally
defined functions, I;(p1,..., PN, qi,---,qn), fori = 1, ..., N, whose mutual
Poisson brackets vanish,
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{Iiv Ij}Poissun = 01 (214)
fori = 1, ..., N and j = 1, ..., N. Then the quantities [; form a
set of N phase space coordinates. In conservative systems, the Hamiltonian,
H(pi,...,PN,q1,---,9N), Will be one of the constants of the motion. In general,
the equation of motion of a phase function, f = f(p1,..., pnN,q1,--.,4N,1), 1S
given by
af _ of
E = E + {H7 f}Poisson. (2-15)

Thus Eqgs. (2.14) and (2.15) imply that % = 0. If a system is integrable, there are
no internal nonlinear resonances leading to chaos. All orbits lie on N-dimensional
surfaces in the 2 N -dimensional phase space.

2.3.1 Noether’s Theorem

As was shown by Noether (1918), isolating integrals result from symmetries. For
example, the total energy is an isolating integral (is a constant of the motion) for
systems that are homogeneous in time (invariant under a translation in time). Total
angular momentum is an isolating integral for systems that are isotropic in space.

Noether’s theorem is generally formulated in terms of the Lagrangian (see Gold-
stein 1980 and Appendix A). Let us consider a dynamical system with N degrees
of freedom whose state is given by the set of generalized velocities and positions
({gi}, {qi}). Let us consider a system whose Lagrangian, L = L({q;}, {gi}), is
known. For simplicity, we consider a system with a time-independent Lagrangian.
The equations of motion are given by the Lagrange equations

oL d (dL
— = (=)=0, (=1,....N). (2.16)
dg; dt\9q;

For such systems, Noether’s theorem may be stated as follows.

o Noether’s Theorem 1f a transformation
t—t' =148, qi(t) > q{(t') = qi(t) +8¢i(1), and
gi = 41" = ¢i(t) + 84 (1)
(fori =1, ..., N) leaves the Lagrangian form invariant,

L({gi (O}, {q: (D) — L'({4{ ()} {gi () = LUG{ ()} {g/ D, 2.17)



