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Preface

Deep learning is known as part of a machine learning methodology based on an
artificial neural network. Increasing data availability and computing power enhance
applications of deep learning to hydrometeorological and environmental fields.
However, books that specifically focus on the application to these fields are limited.
Therefore, this book focuses on the explanation of deep learning techniques and
their applications to hydrometeorological and environmental studies.

This book is divided into three parts. The first part is the introduction of the
basic neural network, covering the basic concepts of artificial neural network in
Chaps. 1–7. Chapter 1 introduces the concept of deep learning, followed by the
mathematical background in Chap. 2. In Chap. 3, how to preprocess a dataset
before applying a model is presented. Chapter 4 describes the terminology and
structure of neural network models. The procedure of training a neural network is
discussed in Chap. 5. The approaches to update the weights of a network model are
presented in Chap. 6. The techniques to improve the model performance are given
in Chap. 7.

The second part introduces advanced techniques in deep learning algorithms
from Chaps. 8–10. The advanced neural network algorithms, as Extreme Learning
Machine and Autoencoding, are presented in Chap. 8. The temporal deep learning
techniques, as Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU),
are discussed in Chap. 9. The spatial deep learning technique, as Convolution
Neural Network (CNN), is introduced in Chap. 10.

The third part illustrates how to apply deep learning techniques to real case
studies. In Chap. 11, Tensor flow and Keras programming is presented to illustrate
how to simply implement deep learning to real datasets. Hydrometeorological and
environmental applications of deep learning models are presented in Chaps. 12 and
13, respectively.

The book will be useful to graduate students, college faculty, and researchers in
hydrology, meteorology, and environmental sciences. It may also be useful to
policymakers in government at local, state, and national levels.
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Chapter 1
Introduction

Abstract Deep learning has been popularly employed for analysis and forecasting
in various fields. In this chapter, a brief introduction of deep learning is presented,
including the definition and pros and cons of deep learning, followed by the recent
applications of deep learning models in hydrological and environmental fields. The
structure of the remaining chapters for this book is also explained.

1.1 What is Deep Learning?

In recent years, deep learning techniques have been developed and employed in a
number of fields, such as voice search, automatic text generation, health care, and
image recognition. The skyrocketing development and applications of deep learning
stem from its capability of image classification and object detection with much more
accuracy than a human can do.

Old-fashioned machine learning algorithms using artificial neural networks that
have been developed so far are required to have selected features to learn in advance.
Automated feature learning is one of the major characteristics of deep learning.
Therefore, deep learning can be defined as a subset of machine learning in artificial
intelligence with artificial neural networks that are able to learn without supervision
from data and is also known as deep neural learning and deep neural network.

More intuitively, it is comparable to shallow learning. Let’s assume that one trains
a dog or other animals. Shallow learning is just direct intuitive learning by leading
its action intentionally, for example, sitting down by pointing a finger and calling. In
contrast, deep learning ismore like learning a trend or behavior andmaking a decision
by itself, for example, learning numbers by watching them. In order to make deep
learning accessible, one must possess two important characteristics as remembering
and learning from watching. Therefore, these two deep learning characteristics are
defined in this book as temporal deep learning as remembering and spatial deep
learning as learning from watching.

One of the major temporal deep learning techniques is recurrent neural network
(RNN) models such as Long Short-term Memory and Gated Recurrent Unit. Also,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Introduction

Convolutional Neural Network is one of the major spatial deep learning techniques.
In this book, these two deep learning techniques are mainly introduced, followed by
applications of these deep learning techniques to hydrometeorological and environ-
mental studies. Since those deep learning techniques are based on neural network
models, the description of neural network models is given in advance.

1.2 Pros and Cons of Deep Learning

Deep learning has been recognized as the technology thatmakes artificial intelligence
eventually become smart. Deep learning allows prediction by reducing the effort to
find feature variables that are mostly time-consuming. With enough amount of data,
not much human intervention is needed by deep learning to outperform other models.
In other words, it can learn by itself from mimicking a human brain, especially in
many layers of neurons in the brain cortex with the given dataset.

Deep learning is still pricy and resource-consuming and also requires a large
amount of data. Since it is a branch of neural networks, it still lacks a strong theoretical
foundation and the output result cannot generally provide theoretical reasoning and
explanation. This unexplainable theoretical foundation and the requirement of a
large dataset limits the application of deep learning models to hydrometeorology
and environmental sciences.

1.3 Recent Applications of Deep Learning
in Hydrometeorological and Environmental Studies

There are a number of recent developments and applications of deep learningmodels,
especially to hydrometeorological and environmental studies. Some of the selected
studies are discussed to present how deep learning models have been applied in the
fields of hydrometeorology and environmental science.

In the hydrological field, temporal deep learning algorithms have also been applied
in recent years. For example, Kratzert et al. (2018) applied a recent Recurrent Neural
Network (RNN) model, named Long Short-Term Memory (LSTM), for rainfall-
runoff modeling and compared it with Sacramento Soil Moisture Accounting Model
(SAC-SMA) coupled with Snow-17 snow routine. Their results showed that LSTM
had a competitive performance in comparison to the physical model of SAC-SMA,
especially with regional scaling. Hu et al. (2018) compared artificial neural network
(ANN) and LSTM for forecasting floods. Their results indicated that LSTM outper-
formed the conventional ANN and also showed that the model was more stable. Lee
et al. (2020) proposed a stochastic simulation model with the LSTMmodel and their
results indicated that the LSTM stochastic simulation model reproduced long-term
variability as well as short-term memory.
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In the meteorological field, Pan et al. (2019) employed the spatial deep learning
model of Convolution Neural Network (CNN) to improve precipitation estimation in
statistical downscaling. They trained the model to learn precipitation-related dynam-
ical features from the surrounding dynamical fields and their results showed that the
proposed model improved the precipitation-related parameterization scheme with
CNN. Miao et al. (2019) applied the combined model of CNN and LSTM to forecast
monsoon precipitation and compared it with ECMWF-Interim reanalysis precipita-
tion. Their results showed that the combined deep learning model was superior to the
physical model in forecasting precipitation more accurately from 1 day to 2 weeks
in advance.

In environmental applications, Park et al. (2019) applied a deep neural network
to model membrane fouling mechanisms and compared them with mathematical
models. Their results indicated that the deep neural network showed better predictive
performance in the fouling growth simulation and the flux decline simulation. Oga
et al. (2019) applied CNN to estimate the water quality of a river. Using monitoring
images, water quality can be estimated by training CNN, and it was observed that
the proposed deep learning model outperformed the existing method in terms of
accuracy.

1.4 Organization of Chapters

The chapters of this book are divided into three parts. The first part covers the intro-
duction of the basic concepts of neural network models from Chaps. 1–7. Mathemat-
ical background and data preprocessing are given in Chaps. 2 and 3, respectively.
Chapter 4 discusses the basic concept of a neural network and its training procedure
is explained in Chap. 5. Chapter 6 explains how to update the weights of the neural
network, followed by techniques to improve the model performance in Chap. 7.

The second part describes the advanced techniques in deep learning algorithms
from Chaps. 8–10. In Chap. 8, advanced neural network algorithms, such as Extreme
LearningMachine and Autoencoding, are discussed in Chap. 8. Chapter 9 deals with
deep learning techniques, such as a recurrent neural network (RNN), long short-
term memory (LSTM), and Gated Recurrent Unit (GRU), for time series data. Deep
learning techniques for spatial datasets, as convolution neural network, are presented
in Chap. 10.

The third part demonstrates the application procedure for deep learning tech-
niques. Tensorflow and Keras programming are discussed in Chap. 11. Hydromete-
orological and environmental applications to deep learning algorithms are presented
in Chaps. 12 and 13, respectively.
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1.5 Summary and Conclusion

Nowadays, there is a great deal of interest in the development and application of deep
learning techniques in a number of fields. It is hoped that this book helps appreciate
deep learning techniques, improve their understanding, and advance their applica-
tion to hydrometeorological and environmental fields. Undergraduate and graduate
students who are interested in deep learning algorithms in hydrometeorological and
environmental fields may find the book to be useful. For beginners in governmental
and educational sectors who need to apply deep learning techniques, this book might
serve as a guide to become familiar with computational procedures for deep learning.
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Chapter 2
Mathematical Background

Abstract In this current chapter, the fundamental mathematical background is
presented for a deep learning model. Linear simple and multiple regression models
are explained, including the definition of error terms and parameter estimation proce-
dure, since they are similarly used in deep learning models. Also, the basic concept
of the time series model is also explained and this part is mainly referred to in the
LSTM model chapter.

In the current chapter, the fundamental mathematical background, including linear
regression and time series model, is presented.

2.1 Linear Regression Model

2.1.1 Simple Linear Regression

A simple linear model can be described as y = β0 + β1x with the actual observed
value of y as a linear function of x with parameters β0 and β1. Here, x is called as
a predictor, explanatory variable, independent variable or input variable, while y is
as predictand, response variable, dependent variable or output variable. This linear
model can be generalized to a probabilistic model for the random variable Y as

Y = β0 + β1X + ε (2.1)

Note that Y is capitalized because the output of the model includes a random noise
(ε) assumed to be normally distributed with mean E(ε) = 0 and Var(ε) = σ 2

ε and
the output is now a random variable. Also, X is called a predictor (or an explanatory
variable), while Y is a predictand (or a response variable).
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For a sample of observed data pairs of size n, that is, (xi, yi) for i = 1, …, N, the
sum of squares of errors (SSE) is defined as

SSE =
∑N

i=1
[yi − ŷi ]2 =

∑N

i=1
[yi − (β0 + β1xi )]2 =

∑N

i=1
ε2i (2.2)

The parameters can be estimated by finding the parameter set with the criterion
minimizing the sum of errors (i.e., SSE), called least-square estimate, which is anal-
ogous to taking the derivatives of SSE with respect to the parameters separately and
equating the derivatives to zero as

∂SSE

∂β0
= −2

∑N

i=1
[yi − (β0 + β1xi )] = 0 (2.3)

∂SSE

∂β1
= −2

∑N

i=1
[yi − (β0 + β1xi )](xi ) = 0 (2.4)

From Eq. (2.3),

∑N

i=1
yi − nβ0 − β1

∑n

i=1
xi = 0 (2.5)

β̂0 = y − β̂1x (2.6)

From Eq. (2.4),

∑N

i=1
[yi − (y − β1x + β1xi )]xi = 0 (2.7)

∑N

i=1
[(yi − y) − β1(xi − x)]xi = 0 (2.8)

Since
∑N

i=1 [(yi − y) − β1(xi − x)]x = 0,

∑N

i=1
[(yi − y) − β1(xi − x)]xi −

∑N

i=1
[(yi − y) − β1(xi − x)]x = 0 (2.9)

∑N

i=1
[(yi − y) − β1(xi − x)](xi − x) = 0 (2.10)

Then,

β̂1 =
∑N

i=1(xi − x)(yi − y)
∑N

i=1(xi − x)2
(2.11)

Note that the least-square estimate of β0 and β1 is now denoted as β̂0 and β̂1.
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In addition, the coefficient of determination, the proportion of the variance in the
predictand variable that is predictable from a predictor, is denoted as R2 and can be
estimated as follows:

R2 = SSR

SST
=

∑N
i=1

(
ŷi − y

)2
∑N

i=1(yi − y)2
(2.12)

where the sum of squares of the total (SST ) is
∑n

i=1 (yi − y)2 and the regression

sum of squares (SSR) is
∑N

i=1

(
ŷi − y

)2
. This statistic is a measure of how well

the predictor observations can be replaced by the model predictions according to
the portion of the variation, as in Eq. (2.12). A higher value of R2 indicates better
performance of the linear regression model.

Example 2.1 Estimate the parameters of β0 and β1 with the least-square esti-
mate as shown inEqs. (2.6) and (2.11), respectively, for the dataset in the second
column (i.e., x1) for a predictor (x) and the fourth column for a predictand (y)
in Table 2.1.

Solution:

As shown in Table 2.2,

β̂1 =
∑N

i=1(xi − x)(yi − y)
∑N

i=1(xi − x)2
= 1.88

3.65
= 0.51

β̂0 = y − β̂1x = −0.62 − 0.51 × 0.51 = −0.8

Its scatterplot is shown in Fig. 2.1 with its estimated equation. Note that the
line indicates the estimated value from ŷ = β̂0 + β̂1x = −0.8 + 0.51x .

Also, the coefficient of determination (R2) can be estimated from Table 2.2
as

R2 = SSE

SST
=

∑n
i=1

(
ŷi − y

)2
∑n

i=1(yi − y)2
= 0.97

2.77
= 0.35

2.1.2 Multiple Linear Regression

The multiple regression for multiple variables of xi 1, xi 2, . . . ., xi S can be described
as
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Table 2.1 Example dataset for simple and multiple linear regression

Index x1 x2 Y

1 −0.33 −0.49 −1.83

2 0.69 0.25 −0.23

3 0.26 −0.69 −1.25

4 −0.22 −0.54 −0.70

5 0.50 0.16 0.03

6 0.28 −0.16 −0.31

7 1.76 −0.18 −0.23

8 0.35 0.45 −0.79

9 0.47 0.49 −0.49

10 1.33 0.42 −0.44

Average 0.51 −0.03 −0.62

Table 2.2 Simple linear regression example to estimate the parameters and determination of
coefficient (R2)

Index xi − x yi − y (xi − x)
×(yi − y)

(xi − x)2 ŷi ŷi − y
(
ŷi − y

)2
(yi − y)2

1 −0.84 −1.21 1.01 0.70 −1.06 −0.43 0.19 1.45

2 0.18 0.39 0.07 0.03 −0.53 0.09 0.01 0.16

3 −0.25 −0.63 0.16 0.06 −0.75 −0.13 0.02 0.39

4 −0.73 −0.08 0.06 0.53 −1.00 −0.38 0.14 0.01

5 −0.01 0.65 −0.01 0.00 −0.63 0.00 0.00 0.43

6 −0.23 0.31 −0.07 0.05 −0.74 −0.12 0.01 0.10

7 1.25 0.39 0.49 1.57 0.02 0.65 0.42 0.16

8 −0.16 −0.17 0.03 0.03 −0.71 −0.08 0.01 0.03

9 −0.04 0.13 −0.01 0.00 −0.64 −0.02 0.00 0.02

10 0.82 0.18 0.15 0.67 −0.20 0.42 0.18 0.03

Sum 1.88 3.65 Sum 0.97 2.77

Yi = β0 + β1x
1
i + β2x

2
i + · · · + βs x

s
i + εi (2.13)

where S is the number of predictors of interest. In matrix form, the linear regression
model can be expressed by

Yi = �xTi β + εi (2.14)

where −→x i = [1, x1i , x2i , . . . ., x S
i ]T and β = [β0, β1, .., βs]T . Note that 1 is added in−→x i to include the intercept term of β0 in this matrix form.


