
Springer Monographs in Mathematics

Siegfried Carl
Vy Khoi Le

Multi-Valued 
Variational 
Inequalities 
and Inclusions



Springer Monographs in Mathematics

Editors-in-Chief

Minhyong Kim, School of Mathematics, Korea Institute for Advanced Study, Seoul,
South Korea; Mathematical Institute, University of Warwick, Coventry, UK

Katrin Wendland, Research group for Mathematical Physics, Albert Ludwigs
University of Freiburg, Freiburg, Germany

Series Editors

Sheldon Axler, Department of Mathematics, San Francisco State University, San
Francisco, CA, USA

Mark Braverman, Department of Mathematics, Princeton University, Princeton, NY,
USA

Maria Chudnovsky, Department of Mathematics, Princeton University, Princeton,
NY, USA

Tadahisa Funaki, Department of Mathematics, University of Tokyo, Tokyo, Japan

Isabelle Gallagher, Département de Mathématiques et Applications, Ecole Normale
Supérieure, Paris, France

Sinan Güntürk, Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA

Claude Le Bris, CERMICS, Ecole des Ponts ParisTech, Marne la Vallée, France

Pascal Massart, Département de Mathématiques, Université de Paris-Sud, Orsay,
France

Alberto A. Pinto, Department of Mathematics, University of Porto, Porto, Portugal

Gabriella Pinzari, Department of Mathematics, University of Padova, Padova, Italy

Ken Ribet, Department of Mathematics, University of California, Berkeley, CA,
USA

René Schilling, Institute for Mathematical Stochastics, Technical University Dres-
den, Dresden, Germany

Panagiotis Souganidis, Department of Mathematics, University of Chicago,
Chicago, IL, USA

Endre Süli, Mathematical Institute, University of Oxford, Oxford, UK

Shmuel Weinberger, Department of Mathematics, University of Chicago, Chicago,
IL, USA

Boris Zilber, Mathematical Institute, University of Oxford, Oxford, UK



This series publishes advanced monographs giving well-written presentations of the
“state-of-the-art” in fields of mathematical research that have acquired the maturity
needed for such a treatment. They are sufficiently self-contained to be accessible to
more than just the intimate specialists of the subject, and sufficiently comprehensive
to remain valuable references for many years. Besides the current state of
knowledge in its field, an SMM volume should ideally describe its relevance to and
interaction with neighbouring fields of mathematics, and give pointers to future
directions of research.

More information about this series at http://www.springer.com/series/3733

http://www.springer.com/series/3733


Siegfried Carl • Vy Khoi Le

Multi-Valued Variational
Inequalities and Inclusions



Siegfried Carl
Institute of Mathematics
Martin-Luther-Universität Halle-Wittenberg
Halle (Saale), Germany

Vy Khoi Le
Department of Mathematics and Statistics
Missouri University of Science
and Technology
Rolla, MO, USA

ISSN 1439-7382 ISSN 2196-9922 (electronic)
Springer Monographs in Mathematics
ISBN 978-3-030-65164-0 ISBN 978-3-030-65165-7 (eBook)
https://doi.org/10.1007/978-3-030-65165-7

Mathematics Subject Classification: 35J87, 35J88, 35K86, 35K87, 35R05, 35R70, 47J20, 47J22, 47J35,
49J40, 49J53, 28Bxx, 35B51, 35J20, 35J66, 35K61, 35K92, 35Q74, 47H04, 47H05, 47H07, 49J53

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-65165-7


Dedicated to my wife Gudrun

S. Carl

Dedicated to my mother

V.K. Le



Preface

The foundation and a systematic study of variational inequalities date back to the
1960s of the last century and began with the work of Fichera [113] and Stampacchia
[225, 226], which was motivated by problems in mechanics and potential theory, for
example obstacle problems in elasticity, the Signorini problem [222], and the study
of the capacity of sets. The rapid growth of the theory, made possible by the work
of Lions and Stampacchia [187], Brézis [31, 32], Browder [35, 36], Kinderlehrer
[145, 146], Duvaut and Lions [104], Friedman [114], Baiocchi and Capelo [16],
Troianiello [234], Panagiotopoulos [203, 205], and many others, brought about
important contributions to nonlinear and nonsmooth analysis, calculus of variations,
optimization theory, and to several branches of mechanics, mathematical physics,
and engineering (see e.g., [14, 77, 121, 133, 152, 212]).

Multi-valued variational inequalities have their origin in the study of (non-
smooth) locally Lipschitz continuous energy functionals under constraints, and
arise as necessary conditions for critical points of such functionals, which can be
expressed in the form of variational-hemivariational inequalities. This new type
of variational inequalities, first introduced by Panagiotopoulos in the 1980s of the
last century [203, 204], was closely related to the development of the by then new
concept of Clarke’s generalized gradient of locally Lipschitz functionals [79], and
was used to model some mechanical problems governed by nonconvex, nonsmooth
energy functionals, which naturally arise if nonmonotone, multi-valued constitutive
laws are taken into account. Variational-hemivariational inequalities will be seen to
be only particular cases of the multi-valued variational inequalities we are going to
study in this monograph.

This book focuses on a large class of multi-valued variational differential
inequalities and inclusions of nonpotential type of the form

u ∈ X ∩D(∂�) : 0 ∈ A(u)+ F (u)+ ∂�(u) in X∗, (1)

whose leading differential operator A : X → 2X
∗

is a second-order Leray-
Lions operator. The (multi-valued) lower order operator F : X → 2X

∗
in (1),

which may depend on u and its gradient ∇u, is basically supposed to be only
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viii Preface

upper semicontinuous with respect to u and ∇u. The constraint is reflected by the
subdifferential of a convex, lower semicontinuous, and proper functional� : X→
R ∪ {+∞}. In particular, constraints given by closed and convex subsets K ⊂ X,
which amount to � = IK , where IK is the indicator function of K , are discussed
in detail separately. Depending on the growth conditions imposed on the operators
A and F , we investigate (1) in different function spaces X such as Sobolev spaces,
Orlicz-Sobolev spaces, and Sobolev spaces with variable exponents. Besides the
treatment of (1) in function spaces on bounded domains of RN , we also investigate
(1) on unbounded domains, for which an appropriate setting is in Beppo-Levi spaces
and weighted Lebesgue spaces. As is well known, the unboundedness of the domain
under consideration causes a number of additional difficulties to the investigation,
and therefore the analysis of (1) in this case requires new techniques and is not
a straightforward extension of the study of its corresponding problem on bounded
domains.

The main goal of this monograph is to provide a systematic, unified, and
relatively self-contained exposition of existence and comparison principles of the
multi-valued variational inequality (1) based on a suitably generalized method of
sub-supersolution, which preserves the characteristic features of the commonly
known sub-supersolution method for quasilinear elliptic problems. This method will
be established not only for the stationary multi-valued variational inequality (1), but
also for its evolutionary counterpart

u ∈ Lp(0, τ ;X) ∩D(∂�) : 0 ∈ u′ +A(u)+ F (u)+ ∂�(u) in Lp
′
(0, τ ;X∗),

(2)

as well as for systems of (1) and (2), where u′ = du
dt

denotes the generalized
derivative in the sense of vector-valued distributions. It should be pointed out
that in the treatment of the evolutionary multi-valued variational inequality (2), an
additional difficulty arises, due to the presence of the indicator function � = IK ,
so that no growth condition can be assumed on ∂� , and therefore, in general, no
estimate of the time derivative du

dt
in the dual space, which would be necessary for

proving existence of solutions, is available. In the case where K has a nonempty
interior, that is int (K) �= ∅, this difficulty can be easily overcome (see Section 5.3).
However, the requirement that int (K) �= ∅ would exclude the important application
to obstacle problems, since convex sets representing obstacles have, in general,
empty interiors. This difficulty is overcome either by applying a penalty technique
(see Chapter 5) or by requiring additional regularity assumptions on the operators
A and F of (2) (see Chapter 7).

For the reader’s orientation, we present in Chapter 1 some motivating examples
and an outline of the topics studied in this monograph. In the treatment of the
problems under consideration, a wide range of mathematical theories and methods
from nonlinear and nonsmooth analysis, partial differential equations, and function
spaces have been employed, a brief outline of which is provided in Chapter 2,
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in order to keep the volume mostly self-contained. The main materials form the
contents of the next five chapters, from Chapter 3 to Chapter 7.

This treatise is an outgrowth of the authors’ research on the subject during
the past ten years. However, a great deal of the material presented here has been
obtained only in recent years and appears for the first time in book form.

Our book is addressed to graduate students of mathematics and researchers in
pure and applied mathematics, physics, and theoretical mechanics.

The authors are grateful to Springer-Verlag for publishing our book in its
prestigious series SMM. We are especially pleased to thank Elena Griniari from
Springer for her invaluable help and collaboration.

Halle (Saale), Germany Siegfried Carl
Rolla, MO, USA Vy Khoi Le
February 2021
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Chapter 1
Introduction

In the study of a wide range of nonlinear elliptic and parabolic boundary value
problems, the method of sub-supersolution has been proved to play an eminent
role. This method is a powerful tool for establishing existence and enclosure
results when coercivity of the operators related to the abstract formulation of
the problems under consideration fails. Further qualitative properties such as the
multiplicity and location of solutions or the existence of extremal solutions can
also be investigated by means of the sub-supersolution method. As stationary
and evolutionary variational inequalities of nonpotential type include, in general,
nonlinear elliptic and parabolic boundary value problems as particular cases, it is
desirable to extend the sub-supersolution method to variational inequalities in a way
that preserves its characteristic features.

This book focuses on even more general multi-valued variational inequalities
(MVIs in short) of possible nonpotential type of the abstract form

u ∈ X ∩D(∂�) : 0 ∈ A(u)+ F (u)+ ∂�(u) in X∗, (1.1)

where X stands for some function space with its dual space X∗, A : X → 2X
∗

is
a second-order Leray-Lions operator, and F : X → 2X

∗
is a multi-valued lower

order operator, which may depend on u and its gradient ∇u, and which, basically, is
only supposed to be upper semicontinuous with respect to u and ∇u. The constraint
imposed on the problem is reflected by the subdifferential of a convex, lower
semicontinuous, and proper functional � : X → R ∪ {+∞}, which includes, in
particular, the important case of � = IK , the indicator function of some closed and
convex set K ⊂ X.

An equivalent formulation of (1.1) reads as follows: Find u ∈ X ∩D(∂�) such
that there exist ζ ∗ ∈ A(u) and η∗ ∈ F (u) satisfying

〈ζ ∗ + η∗, v − u〉 +�(v)−�(u) ≥ 0, ∀ v ∈ X, (1.2)
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2 1 Introduction

where D(∂�) denotes the domain of the subdifferential ∂� given by D(∂�) =
{u ∈ X : ∂�(u) �= ∅} and 〈·, ·〉 = 〈·, ·〉X∗, X denotes the duality pairing betweenX∗
and X. Besides the stationary MVI (1.1) we also study its evolutionary counterpart
of the general form

u ∈ Lp(0, τ ;X) ∩D(∂�) : 0 ∈ u′ +A(u)+ F (u)+ ∂�(u) in Lp
′
(0, τ ;X∗),

(1.3)

where A, F : Lp(0, τ ;X) → 2L
p′ (0,τ ;X∗) and ∂� : Lp(0, τ ;X) ∩ D(∂�) →

2L
p′ (0,τ ;X∗) are the corresponding time-dependent multi-valued operators, and u′ =

du
dt

denotes the generalized derivative in the sense of vector-valued distributions.
Our main goal is to present a systematic, unified, and self-contained exposition

of existence and enclosure results based on a suitably generalized method of sub-
supersolution, which is especially useful when the coercivity of the operators in
(1.1) or (1.3) is not available. Let us present now two elementary motivating
examples for stationary MVIs. Multi-valued variational inequalities have their
background in the variational study of critical levels of certain (nonsmooth) locally
Lipschitz energy functionals under constraints, and arise as necessary conditions for
critical points of such functionals, such as local extrema. Consider first the following
simple example on the real line.

Example 1.1 Let � : R → R be a locally Lipschitz function, and K = [a, b] be a
closed interval of R. Assume that the restriction�|K attains its minimum at u ∈ K ,
that is,

�(u) = inf
v∈K �(v). (1.4)

This minimization problem on K is equivalent to

u ∈ K : inf
v∈R[�(v)+ IK(v)] = �(u)+ IK(u) = �(u), (1.5)

where IK : R→ R ∪ {+∞} is the indicator function of K defined by

IK(v) =
{

0 if v ∈ K ,
+∞ if v ∈ X \K.

By the convexity of IK , the function I = � + IK satisfies the following inequality
for any t ∈ (0, 1) and v ∈ R

0 ≤ I (u+ t (v − u))− I (u) = �(u+ t (v − u))−�(u)+ IK(u+ t (v − u))− IK(u)
≤ �(u+ t (v − u))−�(u)+ t (IK(v)− IK(u)).
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Dividing the last inequality by t > 0 and passing to the lim supt→0+, we obtain the
following necessary condition for the minimum point u:

0 ≤ �o(u; v − u)+ IK(v)− IK(u), ∀ v ∈ R, (1.6)

where �o(u; �) denotes Clarke’s generalized directional derivative of � at u in the
direction � (see Definition 2.54 in Chapter 2). Inequality (1.6) may be considered as
a variational-hemivariational inequality on the real line. In deriving (1.6) we have
employed the relation

lim sup
t→0+

�(u+ t (v − u))−�(u)
t

≤ �o(u; v − u),

which readily follows from the definition of Clarke’s generalized directional
derivative. Now let us verify that inequality (1.6) is equivalent to the inclusion:

u ∈ D(∂IK) = K : 0 ∈ ∂�(u)+ ∂IK(u), (1.7)

where ∂�(u) stands for Clarke’s generalized gradient of � at u, and ∂IK(u) stands
for the subdifferential of the convex function IK in the sense of convex analysis (see
Definition 2.52 in Chapter 2). To show the equivalence of (1.6) and (1.7), assume u
satisfies (1.6), which yields by setting v − u = w,

0 ≤ �o(u;w)+ IK(u+ w)− IK(u), ∀ w ∈ R. (1.8)

Since�o(u; 0) = 0, we see from (1.8) that 0 is the (global) minimum of the convex
function w �→ �o(u;w) + IK(u + w) − IK(u), which implies that u ∈ dom(IK)
and

0 ∈ ∂(�o(u; ·)+ IK(u+ ·)− IK(u))(0) = ∂�o(u; ·)(0)+ ∂IK(u+ ·)(0).

From the definition of Clarke’s gradient (see Definition 2.56), we see that
∂�o(u; ·)(0) = ∂�(u), and therefore,

0 ∈ ∂�(u)+ ∂IK(u),

which is (1.7). Conversely, let u satisfy (1.7). Then there is an η ∈ ∂�(u) and a
ξ ∈ ∂IK(u) such that η+ ξ = 0. Hence, by using the definition of Clarke’s gradient
∂� and the subdifferential ∂IK(u) we have

0 = (η+ξ)(v−u) = η (v−u)+ξ (v−u) ≤ �o(u; v−u)+IK(v)−IK(u), ∀ v ∈ R,
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which is (1.6). We note that the inclusion (1.7) can be rewritten in the form −η ∈
∂IK(u) with η ∈ ∂�(u), which amounts to

IK(v) ≥ IK(u)+ (−η)(v − u), ∀ v ∈ R,

or equivalently,

u ∈ K, ∃ η ∈ ∂�(u) : η (v − u) ≥ 0, ∀ v ∈ K, (1.9)

which may be seen as a multi-valued variational inequality on the real line. In
the particular case where � : R → R is smooth, that is, � ∈ C1(R), we have
∂�(u) = {�′(u)}, and thus the multi-valued variational inequality (1.9) reduces to
the following single-valued variational inequality

u ∈ K : �′(u) (v − u) ≥ 0, ∀ v ∈ K.

Example 1.2 LetX = W 1,2
0 (�) be the usual first-order Sobolev space with standard

notation (cf. Section 2.1.2) and consider the energy functionalE on X given by

E(u) = 1

2

∫

�

|∇u|2 dx +
∫

�

j (u) dx, (1.10)

where � ⊂ R
N is a bounded domain with Lipschitz boundary, and j : R → R

is a locally Lipschitz function, whose Clarke’s generalized gradient ∂j satisfies the
following growth condition:

sup{|η| : η ∈ ∂j (s)} ≤ c(1+ |s|), ∀ s ∈ R. (1.11)

Due to the growth condition (1.11) one readily verifies that E : X → R is well
defined. Set

�(u) = 1

2

∫

�

|∇u|2 dx, and J (u) =
∫

�

j (u) dx.

Clearly, � ∈ C1(X), and by Aubin-Clarke’s Theorem (see Theorem 2.61 in
Chapter 2) the functional J : L2(�) → R is Lipschitz continuous on bounded
sets of L2(�) and its Clarke’s generalized gradient satisfies

∂J (u) ⊂ {v ∈ L2(�) : v(x) ∈ ∂j (u(x)) for a.e. x ∈ �}, (1.12)

and if j : R → R is regular in the sense of Definition 2.55, then J is regular
and equality holds in (1.12). Let i : X → L2(�) denote the embedding operator,
which is known to be compact. Then J ◦ i : X → R is locally Lipschitz, and thus
E = �+ J ◦ i : X→ R, being the sum of a differentiable functional and a locally
Lipschitz functional, is also locally Lipschitz.
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LetK ⊂ X be closed and convex and IK its corresponding indicator function. As
in Example 1.1 our goal is to derive a necessary condition for the minimum point
of the nonsmooth (locally Lipschitz) energy functional E under the constraint K .
Assume u ∈ K satisfies

u ∈ K : E(u) = inf
v∈K E(v) = inf

v∈X[E(v)+ IK(v)]. (1.13)

Repeating the arguments in Example 1.1 leads to the following variational-
hemivariational inequality, as a necessary condition for a minimizer u,

0 ≤ Eo(u; v − u)+ IK(v)− IK(u), ∀ v ∈ X = W 1,2
0 (�), (1.14)

which is equivalent to the inclusion

u ∈ D(∂IK) = K : 0 ∈ ∂E(u)+ ∂IK(u), (1.15)

where ∂E(u) stands for Clarke’s gradient of the locally Lipschitz functional E at
u, and ∂IK(u) is the subdifferential of the (convex) indicator function IK at u. By
applying Proposition 2.26 of Chapter 2 to E = � + J ◦ i, and taking into account
that � ∈ C1(X), we obtain

∂E(u) = �′(u)+ ∂(J ◦ i)(u).

The chain rule for Clarke’s gradient (see Corollary 2.16) yields

∂(J ◦ i)(u) = i∗∂J (iu),

where i∗ : L2(�) → X∗ denotes the adjoint operator of the embedding i : X →
L2(�) given by

〈i∗η, u〉 = (η, iu) =
∫

�

η u dx, η ∈ L2(�), u ∈ X.

Thus we arrive at the formula

∂E(u) = �′(u)+ i∗∂J (iu), ∀ u ∈ X. (1.16)

Finally, from (1.15) and (1.16) we obtain the following necessary condition for a
minimum point of E:

u ∈ D(∂IK) = K : 0 ∈ �′(u)+ i∗∂J (iu)+ ∂IK(u) in X∗, (1.17)
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which means that there is an η ∈ ∂J (iu) = ∂J (u) and a ξ ∈ ∂IK(u) such that

0 = �′(u)+ i∗η + ξ,

or, equivalently,

−(�′(u)+ i∗η) = ξ ∈ ∂IK(u),

which yields the necessary condition

u ∈ K, ∃ η ∈ ∂J (u) : 〈�′(u)+ i∗η, v − u〉 ≥ 0, ∀ v ∈ K. (1.18)

As is well known we have

〈�′(u), v〉 =
∫

�

∇u∇v dx = 〈−	u, v〉, ∀ v ∈ X.

Denoting by F the Nemytskij operator associated with the multi-valued function
∂j : R → 2R \ {∅}, that is, F(u)(x) = ∂j (u(x)) and taking (1.12) into account,
we arrive at the following necessary condition for minimum points of E under the
constraintK:

u ∈ D(∂IK) ∩X : 0 ∈ −	u+ F (u)+ ∂IK(u) in X∗, (1.19)

where F = i∗ ◦ ∂j ◦ i is the multi-valued operator generated by ∂j . The problem
(1.19) is thus a particular case of the abstract MVI (1.1) with A = −	, F =
i∗ ◦ ∂j ◦ i, and � = IK .

As the two examples above suggest, MVIs originate from the study of critical levels
of nonsmooth energy functionals, so-called superpotentials. However, important
applications in mechanics (see, e.g., [202–204, 224]) are described by variational-
hemivariational inequalities or differential inclusions that do not originate from
superpotentials. Those applications motivate our study of MVIs of the form (1.1)
and (1.3) that do not necessarily have variational structure, and of which variational-
hemivariational inequalities are particular cases only. However, rather than dealing
with specific applications and modeling, in this treatise we concentrate primarily on
mathematical theories for MVIs.

We would like to point out that the main goal of this monograph is to establish a
unified method of sub-supersolution for the general MVIs (1.1) and (1.3) that will
allow us to prove not only existence and enclosure results, but also to prove certain
qualitative properties of their solution sets. We also note that by specifying the multi-
valued operators A, F and the functional � , the MVIs considered here contain
a wide variety of boundary value problems of quasilinear elliptic and parabolic
inclusions, inequalities, and equations as particular cases.
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This book is essentially an outgrowth of the authors’ research on the subject
during the past ten years. It consists of seven chapters including this introductory
chapter.

Chapter 2 is of auxiliary nature and provides needed mathematical prerequisites
to make the book relatively self-contained, such as, major function spaces, main
results about abstract nonlinear operator equations, and basic concepts of functional
analysis and nonsmooth analysis.

Chapter 3 deals with coercive as well as noncoercive single- and multi-valued
elliptic and parabolic equations and inclusions governed by general (nonpotential
type) Leray-Lions operators and (nonpotential type) single- and multi-valued lower
order terms of which Clarke’s generalized gradient is only a special case. The
approach to study noncoercive problems is based on the sub-supersolution method
established in this chapter, which may therefore be considered a preparatory chapter
for introducing the methods and techniques that will be used in later chapters in
more advanced and generalized settings.

Chapter 4 deals with general multi-valued elliptic variational inequalities of the
form (1.1), where the constraints are given by closed convex sets, that is, where
� = IK with K being a closed and convex set. Here the sub-supersolution method
is developed in its full generality to treat problems that lack coercivity and to
prove the existence of extremal solutions which requires the elaboration of new and
subtle techniques. The sub-supersolution method established here allows to verify
the equivalence between generalized variational-hemivariational inequalities and a
particular class of multi-valued elliptic variational inequalities. Further, MVIs with
discontinuously perturbed lower order multi-valued terms are investigated. Finally,
the sub-supersolution method is extended to systems of MVIs in Orlicz-Sobolev
spaces.

Chapter 5 is devoted to multi-valued evolutionary variational inequalities of the
form (1.3) and related systems under constraints given by closed convex sets, that is,
� = IK . It should be noted that unlike in the stationary case (1.1), in the treatment
of its evolutionary counterpart an additional difficulty arises. This difficulty is due
to the appearance of � = IK , so that no growth condition can be assumed on ∂IK ,
and therefore, in general, no estimate of the time derivative du/dt of the Banach-
valued function t �→ u(t) in the dual space is available, which would be needed for
proving existence of solutions. In the case where K has a nonempty interior, that
is int (K) �= ∅, this difficulty can be easily overcome, since such an assumption
typically allows the application of Rockafellar’s theorem about sums of maximal
monotone operators, which facilitates the study of parabolic variational inequalities
considerably by the implementation of arguments and results for elliptic variational
inequalities to parabolic variational inequalities (see Section 5.3). However, the
condition int (K) �= ∅ would exclude the investigation of certain most important
classes of evolutionary variational inequalities such as parabolic obstacles problems,
in which the associated closed and convex set K representing the obstacle has an
empty interior, that is, int (K) = ∅. In this chapter, we deal with this difficulty by
using a penalty technique, which allows us to treat general obstacle problems.
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In Chapter 6 we investigate MVIs (1.1) and (1.3) with � = IK in unbounded
domains, which-as is well known-causes a number of additional difficulties, and
therefore cannot be considered as just a straightforward extension of the bounded
domain problems. Beppo-Levi spaces and weighted Lebesgue spaces play an
important role to overcome a number difficulties that arise in the functional analytic
treatment of such problems in unbounded domains, and new techniques such as the
Kelvin transform are developed to treat problems in exterior domains.

Finally, in Chapter 7 the sub-supersolution method is extended to MVIs (1.1)
and (1.3) with general convex, lower semicontinuous, and proper functionals � .
The convex functionals are seen here as characterizations of various constraints
imposed on the problems, as well as potential functionals of possibly multi-valued
leading operators. Compared to the case of MVIs on closed and convex sets, this
more general situation is not a direct extension and requires the introduction of new
concepts and implementation of new techniques in both classes of stationary and
evolutionary MVIs. We also investigate in this chapter stationary MVIs, formulated
in Sobolev spaces with variable exponents, in which the lower order terms may
depend on both the unknown function u and its gradient ∇u.



Chapter 2
Mathematical Preliminaries

In this chapter we provide definitions and theorems that will be used in the sequel
pertaining to major function spaces, theory of abstract nonlinear operator equations
governed by (multi-valued) pseudomonotone operators and their evolutionary
counterparts, as well as nonsmooth analysis. Most of these results can be found
in textbooks or monographs, and are given without proof or short sketch of proof
only.

2.1 Function Spaces

2.1.1 Operators in Normed Linear Spaces

The purpose of this section is to provide a survey of basic results from functional
analysis that will be used in the sequel. However, we will assume that the reader is
familiar with some elementary notions such as, for example, metric spaces, Banach
spaces, and Hilbert spaces, as well as notions related to the topological structure of
these spaces. Unless otherwise indicated, all linear spaces considered in this book
are assumed to be defined over the real number field R. The proofs of the results
presented in this section can be found in standard textbooks, for example, [2, 17, 33,
153, 214, 242].
Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be normed linear spaces, and let

A : D(A) ⊂ X→ Y

be an operator with domain D(A) and range denoted by range(A). In case that
D(A) = X we write

A : X→ Y.
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Note, usually we drop the subscriptsX and Y in the notation of the norms ‖ ·‖X and
‖ · ‖Y , respectively, in case there is no ambiguity. By un → u in X we denote the
norm-convergence, and by un ⇀ u we denote the weak-convergence of a sequence
(un) ⊂ X.

Definition 2.1 Let A : D(A) ⊂ X→ Y.

(i) A is continuous at the point u ∈ D(A) iff for each sequence (un) in D(A),

un → u implies Aun → Au.

The operator A : D(A) ⊂ X → Y is called continuous iff it is continuous at
each point u ∈ D(A).

(ii) A is called compact iff A is continuous, and A maps bounded sets into
relatively compact sets.

(iii) A is called completely continuous iff for every sequence (un) in D(A) with
un ⇀ u with u ∈ D(A) ⊂ X, it follows Aun → Au in Y . This means,
a completely continuous operator is sequentially continuous from D(A) with
the relative weak topology into Y with the strong (norm) topology.

An immediate consequence from the definitions above along with the Eberlein-
Smulian Theorem 2.7 about reflexive Banach spaces yields the following corollary.

Corollary 2.1 If X is a reflexive Banach space, D(A) ⊂ X is nonempty, closed,
and convex, and A : D(A) ⊂ X → Y is completely continuous, then A : D(A) ⊂
X→ Y is compact.

For compact operators the following fixed-point theorem due to Schauder holds.

Theorem 2.1 (Schauder’s Fixed-Point Theorem)
Let X be a Banach space, and let

A : M → M

be a compact operator that maps a nonempty subsetM of X into itself. Then A has
a fixed point providedM is bounded, closed, and convex.

In finite-dimensional normed linear spaces Theorem 2.1 reduces to Brouwer’s fixed-
point theorem.

Corollary 2.2 (Brouwer’s Fixed-Point Theorem)
If the operator

A : M → M

is continuous, then A has a fixed point providedM is a compact, convex, nonempty
subset in a finite-dimensional normed linear space.
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Let

A : D(A) ⊂ X→ Y

be a linear operator, which means that the domainD(A) of the operatorA is a linear
subspace of X and A satisfies

A(αu+ βv) = αAu+ βAv for all u, v ∈ D(A), α, β ∈ R.

Proposition 2.1 Let A : X → Y be a linear operator. Then the following two
conditions are equivalent.

(i) A is continuous.
(ii) A is bounded, that is, there is a constant c > 0 such that

‖Au‖ ≤ c‖u‖ for all u ∈ X.

For a linear continuous operator A : X→ Y , the operator norm ‖A‖ is defined by

‖A‖ = sup
‖u‖≤1

‖Au‖,

which can easily be shown to be equal to

‖A‖ = sup
‖u‖=1

‖Au‖.

Proposition 2.2 Let L(X, Y ) denote the space of linear continuous operators A :
X→ Y, where X is a normed linear space and Y is a Banach space. Then L(X, Y )
is a Banach space with respect to the operator norm.

Definition 2.2 Let

A : D(A) ⊂ X→ Y

be a linear operator. The graph of A denoted by Gr(A) is defined by the subset

Gr(A) = {(u,Au) : u ∈ D(A)}

of the product space X × Y. The operator A is called closed (or graph-closed) iff
Gr(A) is closed in X × Y, which means that for each sequence (un) in D(A) it
follows from

un → u in X and Aun → v in Y,
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that u ∈ D(A) and v = Au. Finally, on D(A) the so-called graph norm ‖ · ‖A is
defined by

‖u‖A = ‖u‖ + ‖Au‖ for u ∈ D(A).

Corollary 2.3 If X and Y are Banach spaces and A : D(A) ⊂ X → Y is closed,
thenD(A) equipped with the graph norm, that is, (D(A), ‖ ·‖A) is a Banach space.

Theorem 2.2 (Banach’s Closed Graph Theorem)
Let X and Y be Banach spaces. Then, each closed linear operator A : X → Y

is continuous.

For completeness we shall recall the Uniform Boundedness Theorem and the Open
Mapping Theorem, which together with Banach’s Closed Graph Theorem are all
consequences of Baire’s Theorem.

Theorem 2.3 (Uniform Boundedness Theorem)
Let F be a nonempty set of continuous maps

F : X→ Y,

where X is a Banach space and Y is a normed linear space. Assume that

sup
F∈F

‖Fu‖ <∞ for each u ∈ X.

Then there exists a closed ball B in X of positive radius such that

sup
u∈B
( sup
F∈F

‖Fu‖) <∞.

Corollary 2.4 (Banach-Steinhaus Theorem)
Let L ⊂ L(X, Y ) be a nonempty set of linear continuous operators

A : X→ Y,

where X is a Banach space and Y is a normed linear space. Assume that

sup
A∈L

‖Au‖ <∞ for each u ∈ X.

Then supA∈L ‖A‖ <∞.

Theorem 2.4 (Banach’s Open Mapping Theorem)
LetX and Y be Banach spaces, andA : X→ Y be a linear continuous operator.

Then the following two conditions are equivalent.
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(i) A is surjective.
(ii) A is open, which means that A maps open sets onto open sets.

Corollary 2.5 (Banach’s Continuous Inverse Theorem)
LetX and Y be Banach spaces, andA : X→ Y be a linear continuous operator.

If the inverse operator

A−1 : Y → X

exists, then A−1 is continuous.

Definition 2.3 (Embedding Operator)
Let X and Y be normed linear spaces with

X ⊂ Y.

The embedding operator i : X→ Y is defined by i(u) = u, that is, i is the identity
operator from X into Y.

(i) The embedding X ⊂ Y is called continuous and denoted by X ↪→ Y iff the
embedding operator i : X → Y is continuous, that is, there exists a constant
c > 0 such that

‖u‖Y ≤ c ‖u‖X for all u ∈ X.

(ii) The embedding X ⊂ Y is called compact and denoted by X ↪→↪→ Y iff the
embedding operator i : X → Y is compact, that is, i is continuous and each
bounded sequence (un) in X has a subsequence that converges in Y.

Remark 2.1 More generally, one can define a continuous embedding of a normed
linear space X into a normed linear space Y , whenever there exists a linear,
continuous, and injective operator i : X→ Y. Similarly, X is compactly embedded
into Y iff there exists a linear, compact, and injective operator i : X→ Y.

Duality in Banach Spaces
Definition 2.4 Let X be a normed linear space. A linear continuous functional on
X is a linear continuous operator

f : X→ R.

The set of all linear continuous functionals on X is called the dual space X∗ of X,
that is, X∗ = L(X,R). For the image f (u) of the functional f at u ∈ X we write

〈f, u〉 = f (u) u ∈ X, f ∈ X∗,

and 〈·, ·〉 is called the duality pairing.
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According to the definition of the operator norm, the norm of f is given through

‖f ‖ = sup
‖u‖≤1

|〈f, u〉|.

As a consequence of Proposition 2.2 we get the following result.

Corollary 2.6 LetX be a normed linear space. Then the dual spaceX∗ is a Banach
space with respect to the norm ‖f ‖ for f ∈ X∗.
The most important theorem about the structure of linear functionals on normed
linear spaces is the Hahn-Banach Theorem.

Theorem 2.5 (Hahn-Banach Theorem)
Let X be a normed linear space. Assume M is a linear subspace of X, and

F : M → R is a linear functional such that

|F(u)| ≤ c ‖u‖ for all u ∈ M,

where c is some positive constant. Then F can be extended to a linear continuous
functional f : X→ R that satisfies

|〈f, u〉| ≤ c ‖u‖ for all u ∈ X.

First consequences from the Hahn-Banach Theorem are given in the following
corollary.

Corollary 2.7 Let X be a normed linear space.

(i) For each given u0 ∈ X with u0 �= 0, there exists a functional f ∈ X∗ such that

〈f, u0〉 = ‖u0‖ and ‖f ‖ = 1.

(ii) For all u ∈ X one has

‖u‖ = sup
f∈X∗, ‖f ‖≤1

|〈f, u〉|.

(iii) If for u ∈ X the condition

〈f, u〉 = 0 for all f ∈ X∗

holds, then u = 0.

We set

X∗∗ = (X∗)∗,


