

PROGRAMMING
KOTLIN® APPLICATIONS

INTRODUCTION. . xxv

CHAPTER 1	 Objects All the Way Down. . 1

CHAPTER 2	 It’s Hard to Break Kotlin. . 25

CHAPTER 3	 Kotlin Is Extremely Classy. . 51

CHAPTER 4	 Inheritance Matters. . 69

CHAPTER 5	 Lists and Sets and Maps, Oh My! . . 101

CHAPTER 6	 The Future (in Kotlin) Is Generic . . 129

CHAPTER 7	 Flying through Control Structures. 147

CHAPTER 8	 Data Classes. . 183

CHAPTER 9	 Enums and Sealed, More Specialty Classes. 203

CHAPTER 10	 Functions and Functions and Functions. . 233

CHAPTER 11	 Speaking Idiomatic Kotlin . . 271

CHAPTER 12	 Inheritance, One More Time, with Feeling. 303

CHAPTER 13	 Kotlin: The Next Step. . 331

INDEX. . 339

Programming Kotlin® Applications

Programming Kotlin® Applications

BUILDING MOBILE AND SERVER-SIDE
APPLICATIONS WITH KOTLIN

Brett McLaughlin

Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-69618-6
ISBN: 978-1-119-69616-2 (ebk)
ISBN: 978-1-119-69621-6 (ebk)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard
print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this material at booksupport.wiley.
com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2020947753

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Kotlin is a registered trademark of Kotlin Foundation. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or
vendor mentioned in this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com

for Leigh, as always, my person

ABOUT THE AUTHOR

BRETT MCLAUGHLIN has been working and writing in the technology space for over 20 years. Today,
Brett’s focus is squarely on cloud and enterprise computing. He has quickly become a trusted name
in helping companies execute a migration to the cloud—and in particular Amazon Web Services—by
translating confusing cloud concepts into a clear executive-level vision. He spends his days working
with key decision makers who need to understand the cloud as well as leading and building teams of
developers and operators who must interact with the ever-changing cloud computing space. He has
most recently led large-scale cloud migrations for NASA’s Earth Science program and the RockCreek
Group’s financial platform. Brett is currently the Chief Technology Officer at Volusion, an ecommerce
platform provider.

ABOUT THE TECHNICAL EDITOR

JASON LEE is a software developer happily living in the middle of the heartland. He has over 23 years
of experience in a variety of languages, writing software running on mobile devices all the way up
to big iron. For the past 15+ years, he has worked in the Java/Jakarta EE space, working on applica-
tion servers, frameworks, and user-facing applications. These days, he spends his time working as a
backend engineer, primarily using Kotlin, building systems with frameworks like Quarkus and Spring
Boot. He is the author of Java 9 Programming Blueprints, a former Java User Group president, an
occasional conference speaker, and a blogger. In his spare time, he enjoys spending time with his wife
and two sons, reading, playing the bass guitar, and running. He can be found on Twitter at twitter
.com/jasondlee, and on his blog at jasondl.ee.

ACKNOWLEDGMENTS

I USED TO WATCH MOVIES AND STARE  in amazement at the hundreds of names that scrolled by at
the end. How could so many people be involved in a single movie?

Then I wrote a book. Now I understand.

Carole Jelen is my agent at Waterside, and she replied to an email and picked up the phone at a time
when I really needed someone to help me find my way back into publishing. I’m incredibly grateful.

On the Wiley side, Brad Jones was more patient than he ever should have been. Thanks, Brad! Barath
Kumar Rajasekaran handled a million tiny details, and Pete Gaughan and Devon Lewis kept the train
on the tracks. Christine O’Connor handled production, and Jason Lee caught the technical mistakes
in the text that you wouldn’t want to stumble over. Seriously, Jason in particular made this a much
better book with his keen eye.

As usual, it’s an author’s family that pays the highest price. Long days, more than a few weekends and
evenings, and a constant support keep us going. My wife, Leigh, is the best, and my kids, Dean, Rob-
bie, and Addie, always make finishing one of these a joy.

Let’s do brunch, everyone! Mimosas and breakfast tacos are on me.

—Brett McLaughlin

CONTENTS

INTRODUCTION	 xxv

CHAPTER 1: OBJECTS ALL THE WAY DOWN	 1

Kotlin: A New Programming Language	 1
What Is Kotlin?	 2

What Does Kotlin Add to Java?	 3
Kotlin Is Object-Oriented	 3
Interlude: Set Up Your Kotlin Environment	 4

Install Kotlin (and an IDE)	 4
Install IntelliJ	 5
Create Your Kotlin Program	 8
Compile and Run Your Kotlin Program	 9
Fix Any Errors as They Appear	 10

Install Kotlin (and Use the Command Line)	 10
Command-Line Kotlin on Windows	 10
Command-Line Kotlin on Mac OS X	 11
Command-Line Kotlin on UNIX-Based Systems	 12
Verify Your Command-Line Installation	 12

Creating Useful Objects	 13
Pass In Values to an Object Using Its Constructor	 13
Print an Object with toString()	 14

Terminology Update: Functions and Methods	 15
Print an Object (and Do It with Shorthand)	 15

Override the toString() Method	 16
All Data Is Not a Property Value	 17

Initialize an Object and Change a Variable	 19
Initialize a Class with a Block	 19
Kotlin Auto-Generates Getters and Setters	 20

Terminology Update: Getters, Setters, Mutators, Accessors	 20
Constants Can’t Change (Sort of)	 21

CHAPTER 2: IT’S HARD TO BREAK KOTLIN	 25

Upgrade Your Kotlin Class Game	 25
Name a File According to Its Class	 26

Contents

xvi

Organize Your Classes with Packages	 27
Put Person in a Package	 28
Classes: The Ultimate Type in Kotlin	 31

Kotlin Has a Large Number of Types	 31
Numbers in Kotlin	 31
Letters and Things	 32
Truth or Fiction	 33
Types Aren’t Interchangeable (Part 1)	 33
You Must Initialize Your Properties	 34
Types Aren’t Interchangeable (Part 2)	 35

You Can Explicitly Tell Kotlin What Type to Use	 36
Try to Anticipate How Types Will Be Used	 37

It’s Easy to Break Kotlin (Sort of)	 37
Overriding Property Accessors and Mutators	 37

Custom-Set Properties Can’t Be in a Primary Constructor	 38
Move Properties Out of Your Primary Constructors	 38
Initialize Properties Immediately	 39
Try to Avoid Overusing Names	 41

Override Mutators for Certain Properties	 41
Classes Can Have Custom Behavior	 43

Define a Custom Method on Your Class	 43
Every Property Must Be Initialized	 44

Assign an Uninitialized Property a Dummy Value	 45
Tell Kotlin You’ll Initialize a Property Later	 45
Assign Your Property the Return Value from a Function	 46

Sometimes You Don’t Need a Property!	 47
TYPE SAFETY CHANGES EVERYTHING	 49
Writing Code Is Rarely Linear	 49

CHAPTER 3: KOTLIN IS EXTREMELY CLASSY	 51

Objects, Classes, and Kotlin	 51
All Classes Need an equals(x) Method	 52

Equals(x) Is Used to Compare Two Objects	 52
Override equals(x) to Make It Meaningful	 54
Every Object Is a Particular Type	 56
A Brief Introduction to Null	 58

Every Object Instance Needs a Unique hashCode()	 59
All Classes Inherit from Any	 59
Always Override hashCode() and equals(x)	 61
Default Hash Codes Are Based on Memory Location	 63
Use Hash Codes to Come Up with Hash Codes	 63

Contents

xvii

Searching (and Other Things) Depend on Useful and Fast equals(x)
and hashCode()	 64

Multiple Properties to Differentiate Them in hashCode()	 65
Use == over equals(x) for Speed	 66
A Quick Speed Check on hashCode()	 66

Basic Class Methods Are Really Important	 67

CHAPTER 4: INHERITANCE MATTERS	 69

Good Classes Are Not Always Complex Classes	 69
Keep It Simple, Stupid	 70
Keep It Flexible, Stupid	 71

Classes Can Define Default Values for Properties	 73
Constructors Can Accept Default Values	 74
Kotlin Expects Arguments in Order	 74
Specify Arguments by Name	 74
Change the Order of Arguments (If You Need)	 75

Secondary Constructors Provide Additional Construction Options	 76
Secondary Constructors Come Second	 76
Secondary Constructors Can Assign Property Values	 77
You Can Assign null to a Property . . . Sometimes	 79
null Properties Can Cause Problems	 81

Handle Dependent Values with Custom Mutators	 82
Set Dependent Values in a Custom Mutator	 82
All Property Assignments Use the Property’s Mutator	 83
Nullable Values Can Be Set to null!	 84
Limit Access to Dependent Values	 86
When Possible, Calculate Dependent Values	 87
You Can Avoid Parentheses with a Read-Only Property	 88

Need Specifics? Consider a Subclass	 91
Any Is the Base Class for Everything in Kotlin	 91
{ . . . } Is Shorthand for Collapsed Code	 93
A Class Must Be Open for Subclassing	 94
Terminology: Subclass, Inherit, Base Class, and More	 95
A Subclass Must Follow Its Superclass’s Rules	 96
A Subclass Gets Behavior from All of Its Superclasses	 96

Your Subclass Should Be Different Than Your Superclass	 97
Subclass Constructors Often Add Arguments	 97
Don’t Make Mutable What Isn’t Mutable	 98
Sometimes Objects Don’t Exactly Map to the Real World	 99
Generally, Objects Should Map to the Real World	 99

Contents

xviii

CHAPTER 5: LISTS AND SETS AND MAPS, OH MY!	 101

Lists Are Just a Collection of Things	 101
Kotlin Lists: One Type of Collection	 101

Collection Is a Factory for Collection Objects	 102
Collection Is Automatically Available to Your Code	 104

Mutating a Mutable List	 105
Getting Properties from a Mutable List	 105

Lists (and Collections) Can Be Typed	 106
Give Your Lists Types	 107
Iterate over Your Lists	 108
Kotlin Tries to Figure Out What You Mean	 111

Lists Are Ordered and Can Repeat	 111
Order Gives You Ordered Access	 112
Lists Can Contain Duplicate Items	 112

Sets: Unordered but Unique	 113
In Sets, Ordering Is Not Guaranteed	 114
When Does Order Matter?	 115
Sort Lists (and Sets) on the Fly	 115
Sets: No Duplicates, No Matter What	 116

Sets “Swallow Up” Duplicates	 116
Sets Use equals(x) to Determine Existing Membership	 116
Using a Set? Check equals(x)	 119

Iterators Aren’t (Always) Mutable	 119
Maps: When a Single Value Isn’t Enough	 119

Maps Are Created by Factories	 120
Use Keys to Find Values	 120
How Do You Want Your Value?	 121

Filter a Collection by . . . Anything	 121
Filter Based on a Certain Criterion	 122
Filter Has a Number of Useful Variations	 123

Collections: For Primitive and Custom Types	 123
Add a Collection to Person	 124
Allow Collections to Be Added to Collection Properties	 126
Sets and MutableSets Aren’t the Same	 127
Collection Properties Are Just Collections	 128

CHAPTER 6: THE FUTURE (IN KOTLIN) IS GENERIC	 129

Generics Allow Deferring of a Type	 129
Collections Are Generic	 129
Parameterized Types Are Available Throughout a Class	 130
Generic: What Exactly Does It Refer To?	 131

Contents

xix

Generics Try to Infer a Type When Possible	 132
Kotlin Looks for Matching Types	 132
Kotlin Looks for the Narrowest Type	 132

Sometimes Type Inference Is Wrong	 133
Don’t Assume You Know Object Intent	 133

Kotlin Doesn’t Tell You the Generic Type	 134
Just Tell Kotlin What You Want!	 134

Covariance: A Study in Types and Assignment	 134
What about Generic Types?	 135
Some Languages Take Extra Work to Be Covariant	 137
Kotlin Actually Takes Extra Work to Be Covariant, Too	 137
Sometimes You Have to Make Explicit What Is Obvious	 137
Covariant Types Limit the Input Type as Well as the Output Type	 137
Covariance Is Really about Making Inheritance Work
the Way You Expect	 138

Contravariance: Building Consumers from Generic Types	 138
Contravariance: Limiting What Comes Out Rather
Than What Comes In	 139
Contravariance Works from a Base Class Down to a Subclass	 141
Contravariant Classes Can’t Return a Generic Type	 141
Does Any of This Really Matter?	 142

Unsafevariance: Learning The Rules,
then Breaking Them	 142
Typeprojection Lets You Deal with Base Classes	 143

Variance Can Affect Functions, Not Just Classes	 143
Type Projection Tells Kotlin to Allow Subclasses
as Input for a Base Class	 144
Producers Can’t Consume and Consumers Can’t Produce	 145
Variance Can’t Solve Every Problem	 145

CHAPTER 7: FLYING THROUGH CONTROL STRUCTURES	 147

Control Structures Are the Bread and
Butter of Programming	 147
If and Else: The Great Decision Point	 148

!! Ensures Non-Nullable Values	 148
Control Structures Affect the Flow of Your Code	 149
if and else Follow a Basic Structure	 150
Expressions and if Statements	 151

Use the Results of an if Statement Directly	 152
Kotlin Has No Ternary Operator	 153
A Block Evaluates to the Last Statement in That Block	 153
if Statements That Are Assigned Must Have else Blocks	 154

Contents

xx

When Is Kotlin’s Version of Switch	 154
Each Comparison or Condition Is a Code Block	 155
Handle Everything Else with an else Block	 156
Each Branch Can Support a Range	 157
Each Branch Usually Has a Partial Expression	 158
Branch Conditions Are Checked Sequentially	 159
Branch Conditions Are Just Expressions	 159
When Can Be Evaluated as a Statement, Too	 160

For Is for Looping	 161
For in Kotlin Requires an Iterator	 162
You Do Less, Kotlin Does More	 163
For Has Requirements for Iteration	 163
You Can Grab Indices Instead of Objects with for	 164

Use While to Execute until a Condition Is False	 167
While Is All about a Boolean Condition	 167
A Wrinkle in while: Multiple Operators, One Variable	 168
Combine Control Structures for More Interesting Solutions	 169

Do . . . While Always Runs Once	 170
Every do . . . while Loop Can Be Written as a while Loop	 170
If Something Must Happen, Use do . . . while	 171
do . . . while Can Be a Performance Consideration	 175

Get Out of a Loop Immediately with Break	 176
Break Skips What’s Left in a Loop	 176
You Can Use a Label with break	 177

Go to the Next Iteration Immediately with Continue	 178
Continue Works with Labels as Well	 179
If versus continue: Mostly Style over Substance	 179

Return Returns	 180

CHAPTER 8: DATA CLASSES	 183

Classes in the Real World Are Varied but
Well Explored	 183

Many Classes Share Common Characteristics	 183
Common Characteristics Result in Common Usage	 185

A Data Class Takes the Work Out of a Class
Focused on Data	 185

Data Classes Handle the Basics of Data for You	 185
The Basics of Data Includes hashCode() and equals(x)	 186

Destructuring Data through Declarations	 188
Grab the Property Values from a Class Instance	 188
Destructuring Declarations Aren’t Particularly Clever	 189

Contents

xxi

Kotlin Is Using componentN() Methods to Make Declarations Work	 190
You Can Add componentN() Methods to Any Class	 191
If You Can Use a Data Class, You Should	 192

You Can “Copy” an Object or Make a Copy Of
an Object	 192

Using = Doesn’t Actually Make a Copy	 192
If You Want a Real Copy, Use copy()	 193

Data Classes Require Several Things from You	 194
Data Classes Require Parameters and val or var	 194
Data Classes Cannot Be Abstract, Open, Sealed, or Inner	 195

Data Classes Add Special Behavior to
Generated Code	 195

You Can Override Compiler-Generated Versions of Many
Standard Methods	 196
Supertype Class Functions Take Precedence	 196
Data Classes Only Generate Code for Constructor Parameters	 197
Only Constructor Parameters Are Used in equals()	 199

Data Classes Are Best Left Alone	 200

CHAPTER 9: ENUMS AND SEALED, MORE SPECIALTY CLASSES	 203

Strings Are Terrible as Static Type Representations	 203
Strings Are Terrible Type Representations	 204

Capitalization Creates Comparison Problems	 205
This Problem Occurs All the Time	 206
String Constants Can Help . . . Some	 206

Companion Objects Are Single Instance	 207
Constants Must Be Singular	 208
Companion Objects Are Singletons	 209
Companion Objects Are Still Objects	 210
You Can Use Companion Objects without Their Names	 211

Using a Companion Object’s Name Is Optional	 211
Using a Companion Object’s Name Is Stylistic	 213
Companion Object Names Are Hard	 214
You Can Skip the Companion Object Name Altogether	 215

Enums Define Constants and Provide Type Safety	 216
Enums Classes Provide Type-Safe Values	 216
Enums Classes Are Still Classes	 218

Enums Give You the Name and Position of Constants	 219
Each Constant in an enum Is an Object	 219
Each Constant Can Override Class-Level Behavior	 220

Sealed Classes Are Type-Safe Class Hierarchies	 221

Contents

xxii

Enums and Class Hierarchies Work for Shared Behavior	 222
Sealed Classes Address Fixed Options and Non-Shared
Behavior	 222

Sealed Classes Don’t Have Shared Behavior	 223
Sealed Classes Have a Fixed Number of Subclasses	 224
Subclasses of a Sealed Class Don’t Always Define Behavior	 225

when Requires All Sealed Subclasses to Be Handled	 225
when Expressions Must Be Exhaustive for Sealed Classes	 226
else Clauses Usually Don’t Work for Sealed Classes	 228
else Clauses Hide Unimplemented Subclass Behavior	 229

CHAPTER 10: FUNCTIONS AND FUNCTIONS AND FUNCTIONS	 233

Revisiting the Syntax of a Function	 233
Functions Follow a Basic Formula	 233
Function Arguments Also Have a Pattern	 235

Default Values in Constructors Are Inherited	 237
Default Values in Functions Are Inherited	 238
Default Values in Functions Cannot Be Overridden	 239
Default Values Can Affect Calling Functions	 239
Calling Functions Using Named Arguments Is Flexible	 241
Function Arguments Can’t Be Null Unless You Say So	 241

Functions Follow Flexible Rules	 243
Functions Actually Return Unit by Default	 243
Functions Can Be Single Expressions	 244

Single-Expression Functions Don’t Have Curly Braces	 245
Single-Expression Functions Don’t Use the return Keyword	 246
Single-Expression Functions Can Infer a Return Type	 246
Type Widening Results in the Widest Type Being Returned	 248

Functions Can Take Variable Numbers of Arguments	 249
A vararg Argument Can Be Treated Like an Array	 251

Functions in Kotlin have Scope	 251
Local Functions Are Functions Inside Functions	 252
Member Functions Are Defined in a Class	 252
Extension Functions Extend Existing Behavior without Inheritance	 253

Extend an Existing Closed Class Using Dot Notation	 253
this Gives You Access to the Extension Class	 255

Function Literals: Lambdas and Anonymous
Functions	 257

Anonymous Functions Don’t Have Names	 257
You Can Assign a Function to a Variable	 258
Executable Code Makes for an “Executable” Variable	 259

Higher-Order Functions Accept Functions as Arguments	 260

Contents

xxiii

The Result of a Function Is Not a Function	 260
Function Notation Focuses on Input and Output	 261
You Can Define a Function Inline	 263

Lambda Expressions Are Functions with Less Syntax	 264
You Can Omit Parameters Altogether	 266
Lambda Expressions Use it for Single Parameters	 266
It Makes Lambdas Work More Smoothly	 267
Lambda Expressions Return the Last Execution Result	 267
Trailing Functions as Arguments to Other Functions	 268

Lots of Functions, Lots of Room for Problems	 268

CHAPTER 11: SPEAKING IDIOMATIC KOTLIN	 271

Scope Functions Provide Context to Code	 271
Use Let to Provide Immediate Access to an Instance	 272

let Gives You it to Access an Instance	 273
The Scoped Code Blocks Are Actually Lambdas	 274
let and Other Scope functions Are Largely about Convenience	 275

You Can Chain Scoped Function Calls	 275
An Outer it “Hides” an Inner it	 276

Chaining Scope Functions and Nesting Scope Functions
Are Not the Same	 277

Nesting Scope Functions Requires Care in Naming	 277
Chaining Scope Functions Is Simpler and Cleaner	 278
Prefer Chaining over Nesting	 279
Many Chained Functions Start with a Nested Function	 280

You Can Scope Functions to Non-Null Results	 280
Accepting null Values Isn’t a Great Idea	 282
Scope Functions Give You Null Options	 282
Scope Functions Work on Other Functions . . . In Very Particular Ways	 284

With Is a Scope Function for Processing an Instance	 287
with Uses this as Its Object Reference	 287
A this Reference Is Always Available	 288
with Returns the Result of the Lambda	 289

Run Is a Code Runner and Scope Function	 289
Choosing a Scope Function Is a Matter of Style and Preference	 290
run Doesn’t Have to Operate on an Object Instance	 291

Apply Has a Context Object but No Return Value	 292
apply Operates Upon an Instance	 292
apply Returns the Context Object, Not the Lambda Result	 293
?: Is Kotlin’s Elvis Operator	 293

Also Gives You an Instance . . . but Operates on the Instance First	 294

Contents

xxiv

also Is Just Another Scope Function	 295
also Executes before Assignment	 296

Scope Functions Summary	 298

CHAPTER 12: INHERITANCE, ONE MORE TIME, WITH FEELING	 303

Abstract Classes Require a Later Implementation	 303
Abstract Classes Cannot Be Instantiated	 304
Abstract Classes Define a Contract with Subclasses	 306
Abstract Classes Can Define Concrete Properties and Functions	 308
Subclasses Fulfill the Contract Written by an Abstract Class	 310

Subclasses Should Vary Behavior	 310
The Contract Allows for Uniform Treatment of Subclasses	 311

Interfaces Define Behavior but Have No Body	 313
Interfaces and Abstract Classes Are Similar	 315
Interfaces Cannot Maintain State	 316

A Class’s State Is the Values of Its Properties	 317
An Interface Can Have Fixed Values	 317

Interfaces Can Define Function Bodies	 318
Interfaces Allow Multiple Forms of Implementation	 319

A Class Can Implement Multiple Interfaces	 320
Interface Property Names Can Get Confusing	 321
Interfaces Can Decorate a Class	 321

Delegation Offers Another Option for Extending Behavior	 322
Abstract Classes Move from Generic to Specific	 322
More Specificity Means More Inheritance	 324
Delegating to a Property	 326
Delegation Occurs at Instantiation	 329

Inheritance Requires Forethought and Afterthought	 330

CHAPTER 13: KOTLIN: THE NEXT STEP	 331

Programming Kotlin for Android	 331
Kotlin for Android Is Still Just Kotlin	 331
Move from Concept to Example	 333

Kotlin and Java Are Great Companions	 333
Your IDE Is a Key Component	 333
Kotlin Is Compiled to Bytecode for the Java Virtual Machine	 335
Gradle Gives You Project Build Capabilities	 335

When Kotlin Questions Still Exist	 335
Use the Internet to Supplement Your Own Needs and Learning Style	 336

Now What?	 337

INDEX	 339

INTRODUCTION

For decades, the Java programming language has been the dominant force in compiled languages. While
there have been plenty of alternatives, it’s Java that has remained core to so many applications, from
desktop to server-side to mobile. This has become especially true for Android mobile development.

Finally, though, there is a real contender to at least live comfortably beside Java: Kotlin, a modern
programming language shepherded by JetBrains (www.jetbrains.com). It is not Java, but is com-
pletely interoperable with it. Kotlin feels a lot like Java, and will be easy to learn for developers
already familiar with the Java language, but offers several nice improvements.

Further, Kotlin is a full-blown programming language. It’s not just for mobile applications, or a visual
language that focuses on one specific application. Kotlin supports:

➤➤ Inheritance, interfaces, implementations, and class hierarchies

➤➤ Control and flow structures, both simple and complex

➤➤ Lambdas and scope functions

➤➤ Rich support for generics while still preserving strong typing

➤➤ Idiomatic approaches to development, giving Kotlin a “feel” all its own

You’ll also learn that while Kotlin is a new language, it doesn’t feel particularly new. That’s largely
because it builds upon Java, and doesn’t try to reinvent wheels. Rather, Kotlin reflects lessons that
thousands of programmers coding in Java (and other languages) employ on a daily basis. Kotlin takes
many of those lessons and makes them part of the language, enforcing strong typing and a strict com-
piler that may take some getting used to, but often produces cleaner and safer code.

There’s also an emphasis in Kotlin, and therefore in this book, on understanding inheritance. Whether
you’re using packages from third parties, working with the standard Kotlin libraries, or building your
own programs, you need a solid understanding of how classes interrelate, how subclassing works, and
how to use abstract classes along with interfaces to define behavior and ensure that behavior is imple-
mented. By the time you’re through with this book, you’ll be extremely comfortable with classes,
objects, and building inheritance trees.

The Kotlin website (kotlinlang.org) describes Kotlin as “a modern programming language that
makes developers happier.” With Kotlin and this book, you’ll be happier and more productive in your
Kotlin programming.

WHAT DOES THIS BOOK COVER?

This book takes a holistic approach to teaching you the Kotlin programming language, from a begin-
ner to a confident, complete Kotlin developer. By the time you’re finished, you’ll be able to write
Kotlin applications in a variety of contexts, from desktop to server-side to mobile.

https://www.jetbrains.com/
https://kotlinlang.org/

Introduction

xxvi

This book covers the following topics:

Chapter 1: Objects All the Way Down  This chapter takes you from getting Kotlin installed
to writing your first Kotlin program. You’ll learn about functions from the start, and how to
interact with the command line through a not-quite “Hello, World!” application. You’ll also
immediately begin to see the role of objects and classes in Kotlin, and refine your understand-
ing of what a class is, what an object is, and what an object instance is.

Chapter 2: It’s Hard to Break Kotlin  This chapter delves into one of the distinguishing fea-
tures of Kotlin: its rigid stance on type safety. You’ll learn about Kotlin’s types and begin to
grasp choosing the right type for the right task. You’ll also get familiar with val and var and
how Kotlin allows for change.

Chapter 3: Kotlin Is Extremely Classy  Like any object-oriented language, much of your
work with Kotlin will be writing classes. This chapter digs into classes in Kotlin and looks
at the basic building blocks of all Kotlin objects. You’ll also override some functions and get
deep into some of the most fundamental of Kotlin functions: equals() and hashCode().

Chapter 4: Inheritance Matters  This chapter begins a multichapter journey into Kotlin
inheritance. You’ll learn about Kotlin’s constructors and the relatively unique concept of sec-
ondary constructors. You’ll also learn more about the Any class, understand that inheritance
is truly essential for all Kotlin programming, and learn why writing good superclasses is one
of the most important skills you can develop in all your programming learning.

WILL THIS BOOK TEACH ME TO PROGRAM MOBILE APPLICATIONS
IN KOTLIN?

Yes, but you’ll need more than just this book to build rich mobile applications in
Kotlin. Kotlin is a rich language, and while there are books on all the packages
needed to build mobile languages, this is fundamentally a book on learning Kotlin
from the ground up. You’ll get a handle on how Kotlin deals with generics, inherit-
ance, and lambdas, all critical to mobile programming.

You can then take these concepts and extend them into mobile programming. You
can easily add the specifics of Android-related packages to your Kotlin base knowl-
edge, and use those mobile packages far more effectively than if you didn’t have the
fundamentals down.

If you are anxious to begin your mobile programming journey sooner, consider
picking up a book focused on Kotlin mobile programming, and hop back and forth.
Read and work through Chapter 1 of this book, and then do the same for the book
focused on mobile programming. You’ll have to context switch a bit more, but you’ll
be learning fundamentals alongside specific mobile techniques.

xxvii

Introduction

Chapter 5: Lists and Sets and Maps, Oh My!  This chapter moves away (briefly) from
classes and inheritance to add Kotlin collections to your arsenal. You’ll use these collection
classes over and over in your programming, so understanding how a Set is different from a
Map, and how both are different from a List, is essential. You’ll also dig further into Kotlin
mutability and immutability—when data can and cannot change—as well as a variety of
ways to iterate over collections of all types.

Chapter 6: The Future (in Kotlin) Is Generic  Generics are a difficult and nuanced topic in
most programming languages. They require a deep understanding of how languages are built.
This chapter gets into those depths, and provides you more flexibility in building classes that
can be used in a variety of contexts than possible without generics. You’ll also learn about
covariance, contravariance, and invariance. These might not be the hot topics at the water
cooler, but they’ll be key to building programs that use generics correctly, and also level up
your understanding of inheritance and subclassing.

Chapter 7: Flying through Control Structures  Control structures are the bread and butter of
most programming languages. This chapter breaks down your options, covering if and else,
when, for, while, and do. Along the way, you’ll focus on controlling the flow of an applica-
tion or set of applications all while getting a handle on the semantics and mechanics of these
structures.

Chapter 8: Data Classes  This chapter introduces data classes, another very cool Kotlin
concept. While not specific to only Kotlin, you’ll find that data classes offer you a quick and
flexible option for representing data more efficiently than older languages. You’ll also really
push data classes, going beyond a simple data object and getting into constructors, overriding
properties, and both subclassing with and extending from data classes.

Chapter 9: Enums and Sealed, More Specialty Classes  This chapter introduces enums, a far
superior approach to String constants. You’ll learn why using Strings for constant values is
a really bad idea, and how enums give you greater flexibility and type safety, as well as mak-
ing your code easier to write. From enums, you’ll move into sealed classes, a particularly cool
feature of Kotlin that lets you turbo-charge the concept of enums even further. You’ll also dig
into companion objects and factories, all of which contribute to a robust type-safe approach
to programming where previously only String types were used.

Chapter 10: Functions and Functions and Functions  It may seem odd to have a chapter this
late in the book that purports to focus on functions. However, as with most fundamentals in
any discipline, you’ll have to revisit the basics over and over again, shoring up weaknesses
and adding nuance. This chapter does just that with functions. You’ll dig more deeply into
just how arguments really work, and how many options Kotlin provides to you in working
with data going into and out of your functions.

Chapter 11: Speaking Idiomatic Kotlin  Kotlin, like all programming languages, has certain
patterns of usage that seasoned programmers revert to time and time again. This chapter
discusses these and some of the idioms of Kotlin. You’ll get a jump start on writing Kotlin
that looks like Kotlin is “supposed to” all while understanding how you have a tremendous
amount of flexibility in choosing how to make your Kotlin programs feel like “you.”

Introduction

xxviii

Chapter 12: Inheritance, One More Time, with Feeling  Yes, it really is another chapter
on inheritance! This chapter takes what you’ve already learned about abstract classes and
superclasses and adds interfaces and implementations into the mix. You’ll also learn about
the delegation pattern, a common Kotlin pattern that helps you take inheritance even further
with greater flexibility than inheritance alone provides.

Chapter 13: Kotlin: The Next Step  No book can teach you everything you need to know,
and this book is certainly no exception. There are some well-established places to look for
next steps in your Kotlin programming journey, though, and this chapter gives you a number
of jumping-off points to continue learning about specific areas of Kotlin.

Reader Support for This BookCompanion Download Files
As you work through the examples in this book, the project files you need are available for download
from www.wiley.com/go/programmingkotlinapplications.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at wileysup-
port@wiley.com with the subject line “Possible Book Errata Submission.”

How to Contact the Author
We appreciate your input and questions about this book! Email me at brett@brettdmclaughlin.com,
or DM me on Twitter at @bdmclaughlin.

www.wiley.com/go/programmingkotlinapplications
mailto:wileysupport@wiley.com
mailto:wileysupport@wiley.com
mailto:brett@brettdmclaughlin.com

