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INTRODUCTION

For decades, the Java programming language has been the dominant force in compiled languages. While 
there have been plenty of alternatives, it’s Java that has remained core to so many applications, from 
desktop to server-side to mobile. This has become especially true for Android mobile development.

Finally, though, there is a real contender to at least live comfortably beside Java: Kotlin, a modern 
programming language shepherded by JetBrains (www.jetbrains.com). It is not Java, but is com-
pletely interoperable with it. Kotlin feels a lot like Java, and will be easy to learn for developers 
already familiar with the Java language, but offers several nice improvements.

Further, Kotlin is a full-blown programming language. It’s not just for mobile applications, or a visual 
language that focuses on one specific application. Kotlin supports:

➤➤ Inheritance, interfaces, implementations, and class hierarchies

➤➤ Control and flow structures, both simple and complex

➤➤ Lambdas and scope functions

➤➤ Rich support for generics while still preserving strong typing

➤➤ Idiomatic approaches to development, giving Kotlin a “feel” all its own

You’ll also learn that while Kotlin is a new language, it doesn’t feel particularly new. That’s largely 
because it builds upon Java, and doesn’t try to reinvent wheels. Rather, Kotlin reflects lessons that 
thousands of programmers coding in Java (and other languages) employ on a daily basis. Kotlin takes 
many of those lessons and makes them part of the language, enforcing strong typing and a strict com-
piler that may take some getting used to, but often produces cleaner and safer code.

There’s also an emphasis in Kotlin, and therefore in this book, on understanding inheritance. Whether 
you’re using packages from third parties, working with the standard Kotlin libraries, or building your 
own programs, you need a solid understanding of how classes interrelate, how subclassing works, and 
how to use abstract classes along with interfaces to define behavior and ensure that behavior is imple-
mented. By the time you’re through with this book, you’ll be extremely comfortable with classes, 
objects, and building inheritance trees.

The Kotlin website (kotlinlang.org) describes Kotlin as “a modern programming language that 
makes developers happier.” With Kotlin and this book, you’ll be happier and more productive in your 
Kotlin programming.

WHAT DOES THIS BOOK COVER?

This book takes a holistic approach to teaching you the Kotlin programming language, from a begin-
ner to a confident, complete Kotlin developer. By the time you’re finished, you’ll be able to write 
Kotlin applications in a variety of contexts, from desktop to server-side to mobile.

https://www.jetbrains.com/
https://kotlinlang.org/
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This book covers the following topics:

Chapter 1: Objects All the Way Down  This chapter takes you from getting Kotlin installed 
to writing your first Kotlin program. You’ll learn about functions from the start, and how to 
interact with the command line through a not-quite “Hello, World!” application. You’ll also 
immediately begin to see the role of objects and classes in Kotlin, and refine your understand-
ing of what a class is, what an object is, and what an object instance is.

Chapter 2: It’s Hard to Break Kotlin  This chapter delves into one of the distinguishing fea-
tures of Kotlin: its rigid stance on type safety. You’ll learn about Kotlin’s types and begin to 
grasp choosing the right type for the right task. You’ll also get familiar with val and var and 
how Kotlin allows for change.

Chapter 3: Kotlin Is Extremely Classy  Like any object-oriented language, much of your 
work with Kotlin will be writing classes. This chapter digs into classes in Kotlin and looks 
at the basic building blocks of all Kotlin objects. You’ll also override some functions and get 
deep into some of the most fundamental of Kotlin functions: equals() and hashCode().

Chapter 4: Inheritance Matters  This chapter begins a multichapter journey into Kotlin 
inheritance. You’ll learn about Kotlin’s constructors and the relatively unique concept of sec-
ondary constructors. You’ll also learn more about the Any class, understand that inheritance 
is truly essential for all Kotlin programming, and learn why writing good superclasses is one 
of the most important skills you can develop in all your programming learning.

WILL THIS BOOK TEACH ME TO PROGRAM MOBILE APPLICATIONS 
IN KOTLIN?

Yes, but you’ll need more than just this book to build rich mobile applications in 
Kotlin. Kotlin is a rich language, and while there are books on all the packages 
needed to build mobile languages, this is fundamentally a book on learning Kotlin 
from the ground up. You’ll get a handle on how Kotlin deals with generics, inherit-
ance, and lambdas, all critical to mobile programming.

You can then take these concepts and extend them into mobile programming. You 
can easily add the specifics of Android-related packages to your Kotlin base knowl-
edge, and use those mobile packages far more effectively than if you didn’t have the 
fundamentals down.

If you are anxious to begin your mobile programming journey sooner, consider 
picking up a book focused on Kotlin mobile programming, and hop back and forth. 
Read and work through Chapter 1 of this book, and then do the same for the book 
focused on mobile programming. You’ll have to context switch a bit more, but you’ll 
be learning fundamentals alongside specific mobile techniques.
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Chapter 5: Lists and Sets and Maps, Oh My!  This chapter moves away (briefly) from 
classes and inheritance to add Kotlin collections to your arsenal. You’ll use these collection 
classes over and over in your programming, so understanding how a Set is different from a 
Map, and how both are different from a List, is essential. You’ll also dig further into Kotlin 
mutability and immutability—when data can and cannot change—as well as a variety of 
ways to iterate over collections of all types.

Chapter 6: The Future (in Kotlin) Is Generic  Generics are a difficult and nuanced topic in 
most programming languages. They require a deep understanding of how languages are built. 
This chapter gets into those depths, and provides you more flexibility in building classes that 
can be used in a variety of contexts than possible without generics. You’ll also learn about 
covariance, contravariance, and invariance. These might not be the hot topics at the water 
cooler, but they’ll be key to building programs that use generics correctly, and also level up 
your understanding of inheritance and subclassing.

Chapter 7: Flying through Control Structures  Control structures are the bread and butter of 
most programming languages. This chapter breaks down your options, covering if and else, 
when, for, while, and do. Along the way, you’ll focus on controlling the flow of an applica-
tion or set of applications all while getting a handle on the semantics and mechanics of these 
structures.

Chapter 8: Data Classes  This chapter introduces data classes, another very cool Kotlin 
concept. While not specific to only Kotlin, you’ll find that data classes offer you a quick and 
flexible option for representing data more efficiently than older languages. You’ll also really 
push data classes, going beyond a simple data object and getting into constructors, overriding 
properties, and both subclassing with and extending from data classes.

Chapter 9: Enums and Sealed, More Specialty Classes  This chapter introduces enums, a far 
superior approach to String constants. You’ll learn why using Strings for constant values is 
a really bad idea, and how enums give you greater flexibility and type safety, as well as mak-
ing your code easier to write. From enums, you’ll move into sealed classes, a particularly cool 
feature of Kotlin that lets you turbo-charge the concept of enums even further. You’ll also dig 
into companion objects and factories, all of which contribute to a robust type-safe approach 
to programming where previously only String types were used.

Chapter 10: Functions and Functions and Functions  It may seem odd to have a chapter this 
late in the book that purports to focus on functions. However, as with most fundamentals in 
any discipline, you’ll have to revisit the basics over and over again, shoring up weaknesses 
and adding nuance. This chapter does just that with functions. You’ll dig more deeply into 
just how arguments really work, and how many options Kotlin provides to you in working 
with data going into and out of your functions.

Chapter 11: Speaking Idiomatic Kotlin  Kotlin, like all programming languages, has certain 
patterns of usage that seasoned programmers revert to time and time again. This chapter 
discusses these and some of the idioms of Kotlin. You’ll get a jump start on writing Kotlin 
that looks like Kotlin is “supposed to” all while understanding how you have a tremendous 
amount of flexibility in choosing how to make your Kotlin programs feel like “you.”
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Chapter 12: Inheritance, One More Time, with Feeling  Yes, it really is another chapter 
on inheritance! This chapter takes what you’ve already learned about abstract classes and 
superclasses and adds interfaces and implementations into the mix. You’ll also learn about 
the delegation pattern, a common Kotlin pattern that helps you take inheritance even further 
with greater flexibility than inheritance alone provides.

Chapter 13: Kotlin: The Next Step  No book can teach you everything you need to know, 
and this book is certainly no exception. There are some well-established places to look for 
next steps in your Kotlin programming journey, though, and this chapter gives you a number 
of jumping-off points to continue learning about specific areas of Kotlin.

Reader Support for This BookCompanion Download Files
As you work through the examples in this book, the project files you need are available for download 
from www.wiley.com/go/programmingkotlinapplications.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley & 
Sons, we understand how important it is to provide our customers with accurate content, but even 
with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at wileysup-
port@wiley.com with the subject line “Possible Book Errata Submission.”

How to Contact the Author
We appreciate your input and questions about this book! Email me at brett@brettdmclaughlin.com, 
or DM me on Twitter at @bdmclaughlin.

www.wiley.com/go/programmingkotlinapplications
mailto:wileysupport@wiley.com
mailto:wileysupport@wiley.com
mailto:brett@brettdmclaughlin.com

