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Preface

The reproduction and spread (dispersion, diffusion) of a virus during an epidemic
proceeds when the virus attaches (adheres, binds, fuses) to a host cell and viral
genetic material (VGM) (protein, DNA, RNA) enters (invades, penetrates) the cell,
then replicates, and perhaps mutates, in the cell. This process of a virus host cell
interaction is described in [1]:

It has been known for decades that once a virus gets inside a cell, it hijacks the cellular
processes to produce virally encoded protein that will replicate the virus’s genetic material.
Viral mechanisms are capable of translocating proteins and genetic material from the cell
and assembling them into new virus particles.

The virus replication within the host cell is described in [1]:

An individual viral particle, called a virion, is a far simpler structure than a bacterium. It
has often been questioned whether a virus is alive. It is certainly not living in the everyday
sense of the word. Virions consist of genetic material—DNA or RNA enclosed in a protein
coating. Many viruses, called enveloped viruses, have an additional outer membrane that
encloses the protein coat. This membrane envelope is material co-opted from the cell’s own
membrane. As the new virion buds out from an infected host cell, it is wrapped by the
cell’s bilayer membrane and carries with it any protein that happens to be embedded in
the membrane at the budding site. Enveloped viruses are then free to begin a new cycle of
infection by fusing their cell-derived envelope with the cellular membrane of an uninfected
cell.

The movement of the VGM across the host cell outer membrane is a spatiotem-
poral dynamic process that is modeled in this book as a system of ordinary and
partial differential equations (ODE/PDEs). First, a ODE/PDE model is developed
for a single protein transmitted from the virus through the cell membrane into the
cell interior where it replicates, and possibly mutates.

The movement of the virus protein through the cell membrane is modeled
as a diffusion process expressed by the diffusion PDE (Fick’s second law) with
dependent variable V1(x, t), and independent variables x, the position in the
membrane, and t , time. Within the cell, the time variation of the VGM is modeled
as an ODE with dependent variable C1(t). The subscript 1 denotes the first virus
protein considered.
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The single protein model is then extended to the replication, and possibly
mutation, of the virus protein within the cell interior to produce additional virus
proteins that diffuse out through the cell membrane where they can infect other host
cells.

The model time scale in minutes is 0 ≤ t ≤ 240 (four hours), and the evolution of
the dependent variables is computed by the numerical integration of the ODE/PDEs
from zero initial conditions (IC) V1(x, t = 0) = C1(t = 0) = 0. The departure of
the dependent variables from zero is in response to the virus protein concentration
at the outer membrane surface (the point at which the virus binds to the host cell).

The numerical integration of the ODE/PDE model equations is performed with
routines coded (programmed) in R, a quality, open-source scientific computing
system that is readily available from the Internet. Formal mathematics is minimized,
e.g., no theorems and proofs. Rather, the presentation is through detailed examples
that the reader/researcher/analyst can execute on modest computers. The ODE
dependent variables are plotted against t and the PDE dependent variables are
plotted against x and t with basic R plotting utilities. The solution is by the
numerical method of lines (MOL), an established general algorithm for ODE/PDE
systems.

As extensions of the ODE/PDE models,

• The flux of virus proteins at the outer cell membrane boundary is computed and
plotted against t . Also, a hypothesized vaccine is included by variations in the
entering flux at the cell membrane outer surface.

• A therapeutic drug is hypothesized to vary the rate of VGM production within
the cell.

• The RHS terms and LHS derivatives in t are computed and plotted as an
indication of the origin of the solution properties.

• Cross diffusion between two virus proteins in the cell membrane is implemented
within the MOL framework.

The R routines are available from a download link so that the example models can
be executed without having to first study numerical methods and computer coding.
The routines can then be applied to variations and extensions of the ODE/PDE
model, such as changes in the parameters and the form of the model equations.

The author would welcome comments/suggestions concerning this approach to
the analysis of the virus host cell dynamics (directed to wes1@lehigh.edu).

[1] Cohen, F.S. (2016), How Viruses Invade Cells, Biophysical Journal, 110, pp
1026–1032

Bethlehem, PA, USA W. E. Schiesser
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Chapter 1
Virus Protein ODE/PDE Models

Abstract The modeling of virus host cell interactions starts with a virus protein
transmitted from the virus through the cell membrane into the cell interior where it
replicates, and possibly mutates.

The movement of the virus protein through the cell membrane is modeled as
a diffusion process expressed as a partial differential equation (PDE). Within the
cell, the time variation of the virus protein is modeled with an ordinary differential
equation (ODE).

The ODE/PDE model is then extended to two proteins. The second protein is
produced within the cell and diffuses back out of the cell as a virion that can then
go on to infect other cells. This process describes the spread of the virus.

Keywords virus host cell interaction · genetic material transport · mathematical
model · partial differential equation (PDE) · initial condition (IC) · boundary
condition (BC) · ordinary differential eqquation (ODE) · R coding · method of
lines (MOL)

Introduction

The modeling of virus host cell interactions starts with a virus protein1 transmitted
from the virus through the cell membrane into the cell interior where it repli-
cates, and possibly mutates. This process of virus-cell/adhesion-invasion is briefly
described as [3]

A virus causes disease by entering cells in the human body and hijacking their genetic
machinery so as to reproduce itself again and again: It turns its hosts into viral factories.

A more detailed introduction to virus cell interactions is given in [1, 2, 4].
The movement of the virus protein through the cell membrane is modeled as

a diffusion process expressed as a partial differential equation (PDE). Within the

1virus protein also termed viral protein or just protein. host cell also termed just cell.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. E. Schiesser, Virus Host Cell Genetic Material Transport,
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2 1 Virus Protein ODE/PDE Models

cell, the time variation of the virus protein is modeled with an ordinary differential
equations (ODE).

The statement of this ODE/PDE model follows, including the initial conditions
(ICs), boundary conditions (BCs) and parameters.

1.1 ODE/PDE model for a single virus protein

The ODE/PDE variables are listed in Table 1.1.

Table 1.1 ODE/PDE model variables

V1(x, t) virus protein concentration in the cell membrane

C1(t) virus protein concentration in the cell interior

x position within the membrane

t time

The movement of the virus protein in the cell membrane is modeled with the
diffusion equation

∂V1(x, t)

∂t
= DV 1

∂2V1(x, t)

∂x2 (1.1-1)

where DV 1 is a diffusivity.
Eq. (1.1-2) is second order in x and therefore requires two boundary conditions

(BCs).

DV 1
∂V1(x = xu, t)

∂x
= k1u(V1s(t) − V1(x = xu, t)) (1.1-2)

BC (1.1-2) equates the rate of diffusion of the protein at the membrane outer

boundary x = xu, −DV 1
∂V1(x = xu, t)

∂x
(Fick’s first law), to the rate of mass

transfer at the outer boundary, k1u(V1s(t) − V1(x = xl, t)), where k1u is a mass
transfer coefficient to be specified. V1s(t) is the concentration of viral genetic
material outside the cell.

− DV 1
∂V1(x = xl, t)

∂x
= k1l(C1(t) − V1(x = xl, t)) (1.1-3)

BC (1.1-3) equates the rate of diffusion of the protein at the membrane inner

boundary x = xl ,−DV 1
∂V1(x = xl, t)

∂x
(Fick’s first law), to the rate of mass transfer

at the inner boundary, k1l (C1(t) − V1(x = xl, t)), where k1l is a mass transfer
coefficient to be specified.
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Eq. (1.1-1) is first order in t and requires one initial condition (IC)

V1(x, t = 0) = V10(x) (1.1-4)

where V10(x) is a function to be specified, and is generally taken as the zero
function, that is, no virus protein initially in the cell membrane.

The concentration of the protein in the cell interior, C1(t), is modeled with an
ODE

dC1(t)

dt
= −k1l (C1(t) − V1(x = xl, t)) (1.1-5)

that equates the temporal derivative
dC1(t)

dt
to the rate of transfer of the protein

from the inner boundary of the membrane, −k1l (C1(t) − V1(x = xl, t)), to the cell
interior.

The IC for eq. (1.1-6) is

C1(t = 0) = C10 (1.1-6)

where C10 is a prescribed constant.
Eqs. (1.1) constitute the ODE/PDE model for a single virus protein. The model

is next extended so that the cell interior produces a protein that then diffuses out of
the cell.

1.2 ODE/PDE model for a second virus protein

The variables and parameters for the second protein are designated with subscript
2. The diffusion equation is a direct analog of eq. (1.1-1).

∂V2(x, t)

∂t
= DV 2

∂2V2(x, t)

∂x2 (1.2-1)

The BC (1.2-2) at the outer boundary x = xu = 1 equates the rate of diffusion,

DV 2
∂V2(x = xl, t)

∂x
, to the mass transfer rate in response to an ambient protein

concentration V2a , k2u(V2a −V2(x = xu, t)),where k2u is a mass transfer coefficient
for the second protein.

DV 2
∂V2(x = xu, t)

∂x
= k2u(V2a − V2(x = xu, t)) (1.2-2)
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BC (1.2-3) equates the rate of diffusion of the protein at the membrane inner

boundary x = xl , DV 2
∂V2(x = xl, t)

∂x
, to the rate of mass transfer at the inner

boundary, −k2l (C2(t) − V2(x = xl, t)), where k2l is a mass transfer coefficient
for the second protein.

DV 2
∂V2(x = xl, t)

∂x
= −k2l (C2(t) − V2(x = xl, t)) (1.2-3)

The initial condition for V2(x, t) is

V2(x, t = 0) = V20(x) (1.2-4)

where V20(x) is a function to be specified (usually taken as the zero function).
The concentration of the second protein in the cell interior is modeled with an

ODE

dC2(t)

dt
= −k2l (C2(t) − V2(x = xl, t)) + kr2C

n2
1 (1.2-5)

that equates the temporal derivative
dC2(t)

dt
to the sum of (1) the rate of transfer

of the second protein from the cell interior to the membrane inner boundary,
−k2l (C2(t) − V2(x = xl, t)), and (2) the rate of production of the second protein
from the first protein, +kr2C

n2
1 . For (2), an nth

2 order reaction is assumed, but this
rate can be modified to reflect another rate of production of the second protein.

The IC for eq. (1.2-5) is

C2(t = 0) = C20 (1.2-6)

where C10 is a prescribed constant.
Eqs. (1.1), (1.2) constitute the ODE/PDE models implemented in the R routines

discussed in Chapter 2.
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Chapter 2
Implementation of the ODE/PDE Models

Abstract The ODE/PDE model of Chapter 1 for a single virus protein is imple-
mented in R routines consisting of a main program and an ODE/MOL subordinate
routine called by the main program. The two protein model of Chapter 1 is then
programmed as a main program and subordinate ODE/MOL routine.

The numerical and graphical output for the one and two protein models is
displayed with standard R utilities. The formation of the second protein within the
host cell can result in the transmission of the resulting virions to other host cells,
and thus is the basis for virus transmission.

Keywords virus host cell interaction · viral genetic material (VGM) transport ·
VGM multiplication · VGM mutation · mathematical model · partial differential
equation (PDE) · initial condition (IC) · boundary condition (BC) · ordinary
differential equation (ODE) · R coding · method of lines (MOL)

Introduction

The ODE/PDE models of Chapter 1 for one protein (eqs. (1.1)) and two proteins
(eqs. (1.2)) are implemented in R routines discussed in this chapter.

2.1 R routines for the ODE/PDE models

Eqs. (1.1) constitute the ODE/PDE model for a single virus protein that is imple-
mented with the following R routines, starting with a main program.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
W. E. Schiesser, Virus Host Cell Genetic Material Transport,
https://doi.org/10.1007/978-3-030-68865-3_2
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6 2 Implementation of the ODE/PDE Models

2.1.1 Main program for one protein

The main program for eqs. (1.1) follows.

#
# One ODE, one PDE model
#
# Delete previous workspaces

rm(list=ls(all=TRUE))
#
# Access ODE integrator

library("deSolve");
#
# Access functions for numerical solution

setwd("f:/vci/chap2");
source("pde1a.R");
source("dss004.R");

#
# Parameters

Dv1=1.0e-02;
V1s=1;
k1l=0.1;
k1u=0.1;
V10=0;
C10=0;

#
# Spatial grid (in x)

nx=21;xl=0;xu=1;
x=seq(from=xl,to=xu,by=(xu-xl)/(nx-1));

#
# Independent variable for ODE integration

t0=0;tf=240;nout=21;
tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

#
# Initial condition (t=0)

u0=rep(0,nx+1);
for(i in 1:nx){

u0[i]=V10;
}
u0[nx+1]=C10;
ncall=0;

#
# ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,
sparsetype ="sparseint",rtol=1e-6,
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atol=1e-6,maxord=5);
nrow(out)
ncol(out)

#
# Arrays for plotting numerical solution

V1=matrix(0,nrow=nx,ncol=nout);
C1=rep(0,nout);
for(it in 1:nout){

for(i in 1:nx){
V1[i,it]=out[it,i+1];

}
C1[it]=out[it,2+nx];

}
#
# Display numerical solution

iv=seq(from=1,to=nout,by=4);
for(it in iv){

cat(sprintf("\n t C1(t)\n"));
cat(sprintf("%6.1f%18.3e\n",tout[it],C1[it]));
cat(sprintf(" t x V1(t)\n"));
iv=seq(from=1,to=nx,by=4);
for(i in iv){

cat(sprintf("%6.1f%6.1f%12.3e\n",
tout[it],x[i],V1[i,it]));

}
}

#
# Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));
#
# Plot ODE/PDE solutions
#
# V1

par(mfrow=c(1,1));
matplot(x=x,y=V1,type="l",xlab="x",ylab="V1(x,t)",

xlim=c(xl,xu),lty=1,main="",lwd=2,col="black");
#
# C1

par(mfrow=c(1,1));
plot(x=tout,y=C1,type="l",xlab="t (min)",ylab="C1(t)",

xlim=c(t0,tf+10),lty=1,main="",lwd=2,col="black");

Listing 2.1 Main program for eqs. (1.1)
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We can note the following details about Listing 2.1.

• Previous workspaces are deleted.

#
# One ODE, one PDE model
#
# Delete previous workspaces

rm(list=ls(all=TRUE))

• The R ODE integrator library deSolve is accessed [1]. Then the directory with
the files for the solution of eqs. (1.1) is designated. Note that setwd (set working
directory) uses / rather than the usual \.
#
# Access ODE integrator

library("deSolve");
#
# Access functions for numerical solution

setwd("f:/vci/chap2");
source("pde1a.R");
source("dss004.R");

• The model parameters are specified numerically.

#
# Parameters

Dv1=1.0e-02;
V1s=1;
k1l=0.1;
k1u=0.1;
V10=0;
C10=0;

The parameter values were selected to give a time scale of 240 minutes (min) as
explained subsequently. Specifically, numerical values are assigned to the

– Diffusivity DV 1 in eqs. (1.1-1), (1.1-2), (1.1-3).
– Source term in eq. (1.1-2), V1s(t).
– Mass transfer coefficient k1l in eqs. (1.1-3), (1.1-5).
– Mass transfer coefficient k1u in eq. (1.1-2).
– ICs of eqs. (1.1-4), (1.1-6), V10(x), C10.

• A spatial grid for eq. (1.1-1) is defined with 21 points so that x =
0,0.05,...,1. The membrane length is a normalized value, x = xu = 1.

#
# Spatial grid (in x)

nx=21;xl=0;xu=1;
x=seq(from=xl,to=xu,by=(xu-xl)/(nx-1));
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• An interval in t is defined for 21 output points, so that tout=0,240/20=
12,...,240 (min).

#
# Independent variable for ODE integration

t0=0;tf=240;nout=21;
tout=seq(from=t0,to=tf,by=(tf-t0)/(nout-1));

• ICs (1.1-4), (1.1-6) are implemented. V1(x, t = 0) is placed in a vector u0[i]
of length nx, then C1(t = 0) is added as an element to the end of the vector,
u0[nx+1]

#
# Initial condition (t=0)

u0=rep(0,nx+1);
for(i in 1:nx){

u0[i]=V10;
}
u0[nx+1]=C10;
ncall=0;

Also, the counter for the calls to ode1a is initialized.
• The system of 21 + 1 ODEs is integrated by the library integrator lsodes

(available in deSolve, [1]). As expected, the inputs to lsodes are the ODE
function, pde1a, the IC vector u0, and the vector of output values of t , tout.
The length of u0 (22) informs lsodes how many ODEs are to be integrated.
func,y,times are reserved names.

#
# ODE integration

out=lsodes(y=u0,times=tout,func=pde1a,
sparsetype ="sparseint",rtol=1e-6,
atol=1e-6,maxord=5);

nrow(out)
ncol(out)

nrow,ncol confirm the dimensions of out.
• V1(x, t), C1(t) are placed in a matrix and vector for subsequent plotting.

#
# Arrays for plotting numerical solution

V1=matrix(0,nrow=nx,ncol=nout);
C1=rep(0,nout);
for(it in 1:nout){

for(i in 1:nx){
V1[i,it]=out[it,i+1];

}
C1[it]=out[it,2+nx];

}
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The offset +1 is required because the first element of the solution vectors in out
is the value of t and the 2 to 23 elements are the 21 values of V1 and single value
of C1. These dimensions from the preceding calls to nrow,ncol are confirmed
in the subsequent output.

• The numerical values of C1(t), V1(x, t) returned by lsodes are displayed.
Every fourth value in t and x appear from by=4.

#
# Display numerical solution

iv=seq(from=1,to=nout,by=4);
for(it in iv){

cat(sprintf("\n t C1(t)\n"));
cat(sprintf("%6.1f%18.3e\n",tout[it],C1[it]));
cat(sprintf(" t x V1(t)\n"));
iv=seq(from=1,to=nx,by=4);
for(i in iv){

cat(sprintf("%6.1f%6.1f%12.3e\n",
tout[it],x[i],V1[i,it]));

}
}

• The number of calls to pde1a is displayed at the end of the solution.

#
# Calls to ODE routine

cat(sprintf("\n\n ncall = %5d\n\n",ncall));

• V1(x, t) is plotted against x and parametrically in t with the R utility matplot.
par(mfrow=c(1,1)) specifies a 1 × 1 matrix of plots, that is, one plot on a
page.

#
# V1

par(mfrow=c(1,1));
matplot(x=x,y=V1,type="l",xlab="x",ylab="V1(x,t)",

xlim=c(xl,xu),lty=1,main="",lwd=2,col="black");

• C1(t) is plotted against t with the R utility plot.

#
# C1

par(mfrow=c(1,1));
plot(x=tout,y=C1,type="l",xlab="t (min)",ylab="C1(t)",

xlim=c(t0,tf+10),lty=1,main="",lwd=2,col="black");

This completes the discussion of the main program for eqs. (1.1). The ODE/MOL
routine pde1a called by lsodes from the main program for the numerical MOL
integration of eqs. (1.1) is next.


