Recent Advances in Mechanical Engineering
Select Proceedings of ICRAME 2020
Lecture Notes in Mechanical Engineering

Series Editors
Francisco Cavas-Martinez, Departamento de Estructuras, Universidad Politécnica de Cartagena, Cartagena, Murcia, Spain
Fakher Chaari, National School of Engineers, University of Sfax, Sfax, Tunisia
Francesco Gherardini, Dipartimento di Ingegneria, Università di Modena e Reggio Emilia, Modena, Italy
Mohamed Haddar, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
Vitalii Ivanov, Department of Manufacturing Engineering Machine and Tools, Sumy State University, Sumy, Ukraine
Young W. Kwon, Department of Manufacturing Engineering and Aerospace Engineering, Graduate School of Engineering and Applied Science, Monterey, CA, USA
Justyna Trojanowska, Poznan University of Technology, Poznan, Poland
Lecture Notes in Mechanical Engineering (LNME) publishes the latest developments in Mechanical Engineering—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNME. Volumes published in LNME embrace all aspects, subfields and new challenges of mechanical engineering. Topics in the series include:

- Engineering Design
- Machinery and Machine Elements
- Mechanical Structures and Stress Analysis
- Automotive Engineering
- Engine Technology
- Aerospace Technology and Astronautics
- Nanotechnology and Microengineering
- Control, Robotics, Mechatronics
- MEMS
- Theoretical and Applied Mechanics
- Dynamical Systems, Control
- Fluid Mechanics
- Engineering Thermodynamics, Heat and Mass Transfer
- Manufacturing
- Precision Engineering, Instrumentation, Measurement
- Materials Engineering
- Tribology and Surface Technology

To submit a proposal or request further information, please contact the Springer Editor of your location:

China: Dr. Mengchu Huang at mengchu.huang@springer.com
India: Priya Vyas at priya.vyas@springer.com
Rest of Asia, Australia, New Zealand: Swati Meherishi at swati.meherishi@springer.com
All other countries: Dr. Leontina Di Cecco at Leontina.dicecco@springer.com

To submit a proposal for a monograph, please check our Springer Tracts in Mechanical Engineering at http://www.springer.com/series/11693 or contact Leontina.dicecco@springer.com

Indexed by SCOPUS. All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/11236
The First International Conference on Recent Advancement of Mechanical Engineering (ICRAME 2020) was held from 7 to 9 February 2020 at National Institute of Technology Silchar, Assam, India. The conference aimed to bring together experts from academic, scientific and industrial communities to address new challenges and present their latest research findings, ideas, developments and perspective of the future directions in the field of mechanical engineering. ICRAME 2020 invited researchers to participate in the conference. In this conference, ideas were discussed across the borders among the delegates. Participations of this conference were from all the neighbouring states of the Northeast India and also from other parts of India as well as abroad. There were different topics of interest considered in ICRAME 2020. These were related but not restricted to the following broad areas of mechanical engineering—thermal engineering, design engineering, manufacturing/production engineering and surface engineering. The recent developments in these areas were dealt with in this conference. The conference invited technical papers that addressed the state of the art in the mentioned areas of mechanical science and technology. The papers related to the theoretical modelling works, and analytical and numerical modelling including CFD, experimental investigations and also the state-of-the-art review papers in the relevant areas were considered in ICRAME 2020. The book proceedings publishes all the accepted and presented papers in the said conference. The following are the broad topics of the conference:

- **Thermal Engineering**: Bio-thermal, techniques in fluid flow, compressible flows, biofuels, advancement in renewable energy sources, solar thermal, renewable energy, off-grid renewable energy.
- **Design Engineering**: Computing in applied mechanics and product design, dynamics and control of structures/systems, fracture and failure mechanics, solid mechanics, differential/dynamical systems, modelling and simulation artificial intelligence: fuzzy logic, neural network, etc. Finite element analysis, advanced numerical techniques, advancements in tribology nanomechanics and MEMS, robotics.
• Manufacturing/Production Engineering and Surface Engineering: Casting, welding, etc. Intelligent and advanced manufacturing system, composites, conventional and non-conventional machining, ergonomics: human factors in seating comfort.

Silchar, India K. M. Pandey
Silchar, India R. D. Misra
Silchar, India P. K. Patowari
Guwahati, India U. S. Dixit
Contents

AI-Based ANN Modeling of Performance–Emission Profiles of CRDI Engine under Diesel-Karanja Strategies ... 1
P. Sandeep Varma, Subrata Bhowmik, Abhishek Paul, Pravin Ashok Madane, and Rajsekhar Panua

ANFIS Prediction of Performance and Exhaust Emission Characteristics of CRDI Engine Fueled with Diesel–Butanol Strategies ... 11
Vivek Kumar Mishra, Subrata Bhowmik, Abhishek Paul, Ajay Yadav, and Rajsekhar Panua

Development and Workspace Study of a 4-PP Planar Parallel XY Positioning Stage Using SMA Actuators ... 21
Rutupurna Choudhury, Deep Singh, Anuj Kumar, Yogesh Singh, and Chinmaya Kumar Sahoo

Review of the Hybrid H-Savonius Rotor’s Design and Performance ... 33
D. Sarkar, A. R. Sengupta, P. Bhadra, S. Alam, and B. Debnath

Energy Storage Using Sensible Heat Storage Media: Thermal and Economic Considerations ... 41
Laxman Mishra, Abhijit Sinha, Prasanta Majumder, and Rajat Gupta

Convective Flow of Nanofluid and Nanoencapsulated Phase Change Material Through Microchannel Heat Sink for Passive Cooling of Microelectronics ... 51
Manoj Kumar, Vikram Bisht, Sheshang Singh Chandel, Sumit Sinha-Ray, and Pradeep Kumar

Fabrication of Treated and Untreated Coconut Fibre-Reinforced Epoxy-Based Composites of Different Fibre Content and Comparison of Their Tensile and Flexural Strengths ... 61
U. Deka, M. Bhuyan, C. Borah, S. Kakoti, and R. K. Dutta
Study on Gate Location and Gate Number for Manufacturability of Polymer Gears .. 71
Bikram Singh Solanki, Harpreet Singh, and Tanuja Sheorey

Fuzzy-PID Control of Hydro-motor Speed Used in Heavy Earth Moving Machinery ... 83
Shivdutt Sarkar, Mohit Bhola, Harsha Rowdur, and N. Kumar

Phase Change in an Enclosure Under Different Combinations of Boundary Wall Condition: A Numerical Study 95
Bhaskar Ranjan Tamuli, Sujit Nath, and Dipankar Bhanja

Finite Element Modelling of Electromagnetic Crimping of Copper-Stainless Steel Tube-to-Tube Joint .. 105
Deepak Kumar, Sachin D. Kore, and Arup Nandy

Optimization of Protrusions for an Impinging Jet on a Curved Surface ... 117
Alankrita Singh and B. V. S. S. Prasad

Numerical Analysis on a Selection of Horn Material for the Design of Cylindrical Horn in Ultrasonic Machining 127
Guddakesh Kumar Chandan and Chinmaya Kumar Sahoo

Emission Studies on a Diesel Engine Fueled with Mixed Biodiesel Produced from Non-edible Oils .. 137
Bhabani Prasanna Pattanaik, Chandrakanta Nayak, and Rahul Dev Misra

Recent Advancement in Electromagnetic Forming Processes 147
Sagar Pawar, Sachin D. Kore, and Arup Nandy

Sonali Priyadarshini Das, Raghavendra Singh, and Rahul Dev Misra

Comparative Study of Extended and Unscented Kalman Filters for Estimating Motion States of an Autonomous Vehicle-Trailer System ... 165
Hussein F. M. Ali, Nader A. Mansour, and Youngshik Kim

Numerical Study on Material Flow Behaviour in Friction Stir Welding of Low Carbon Steel ... 175
Pardeep Pankaj, Abhishek Bhardwaj, Avinish Tiwari, Lakshmi Narayan Dhara, and Pankaj Biswas

Comparing Wettability and Frictional Performance of Laser Micro-machined Discrete and Continuous Textures 185
V. Kashyap and P. Ramkumar
Influence of Heat Input on Bead Geometry in Metal Inert Gas Welded Thick P91 Steel ... 193
Lakshmi Narayan Dhara, Pardeep Pankaj, and Pankaj Biswas

opportunities and Challenges in Nanoparticles Formation by Electrical Discharge Machining ... 203
Irshad Ahamad Khilji, Sunil Pathak, Siti Nadiah Binti Mohd Saffe, Shatarupa Biswas, and Yogesh Singh

Preheating Path Selection Through Numerical Analysis of Laser-Aided Direct Metal Deposition 211
Dhiraj Raj, Bipul Das, and Saikat Ranjan Maity

Robust Synthesis of Path Generating Four-Bar Mechanism .. 221
Sanjay B. Matekar and Ajay M. Fulambarkar

Predicting the Surface Roughness in Single Point Incremental Forming ... 233
Manish Oraon, Vinay Sharma, and Soumen Mandal

Prediction of Droplet Size Distribution For Viscoelastic Liquid Sheet ... 243
Saurabh Sharma, Debayan Dasgupta, Sujit Nath, and Dipankar Bhanja

Linear Stability Analysis of Viscoelastic Liquid Sheet in Presence of Moving Gas Medium . 251
Debayan Dasgupta, Saurabh Sharma, Sujit Nath, and Dipankar Bhanja

Development of Feature Extraction-Based Currency Recognition System Using Artificial Neural Network 259
Deep Singh, Rahul Kumar, Rutupurna Choudhury, Ashutosh Padhan, and Yogesh Singh

Design and Fabrication of Android Application-Based Grass Cutter Robotic System .. 271
Rutupurna Choudhury, Deep Singh, Anuj Kumar, and Yogesh Singh

Review on Various Coating Techniques to Improve Boiling Heat Transfer ... 283
Amatya Bharadwaj and Rahul Dev Misra

Effect of Particulate Type Reinforcements on Mechanical and Tribological Behavior of Aluminium Metal Matrix Composites: A Review .. 295
V. S. S. Venkatesh and Ashish B. Deoghare

A Review on Solar Drying Applications Using Latent Heat as Energy Storage Media .. 305
Supreme Das, Agnimitra Biswas, and Biplab Das
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite Element Analysis of Stamping Process of Maraging Steel</td>
<td>319</td>
</tr>
<tr>
<td>Built-Up Wing Panel of a Missile</td>
<td></td>
</tr>
<tr>
<td>Effect of Non-uniform Heating on Forced Convective Flow Through</td>
<td>333</td>
</tr>
<tr>
<td>Asymmetric Wavy Channel</td>
<td></td>
</tr>
<tr>
<td>Sumit Kumar Mehta and Sukumar Pati</td>
<td></td>
</tr>
<tr>
<td>Effect of Sintering Temperatures on Mechanical Properties of</td>
<td>343</td>
</tr>
<tr>
<td>AA7075/B4C/Graphite Hybrid Composite Fabricated by Powder Metallurgy</td>
<td></td>
</tr>
<tr>
<td>Techniques</td>
<td></td>
</tr>
<tr>
<td>Guttikonda Manohar, Saikat Ranjan Maity, and Krishna Murari Pandey</td>
<td></td>
</tr>
<tr>
<td>Natural Convection from Two Cylinders in an Enclosure with Sinusoidal</td>
<td>351</td>
</tr>
<tr>
<td>Bottom Wall: A Numerical Study</td>
<td></td>
</tr>
<tr>
<td>Dhrijit Kumar Deka, Gopal Chandra Pal, Sukumar Pati, and Pitambar</td>
<td></td>
</tr>
<tr>
<td>R. Randive</td>
<td></td>
</tr>
<tr>
<td>Identification of Parameters for Ultrasonic Machining (USM) on</td>
<td>361</td>
</tr>
<tr>
<td>Drilling of Graphene Oxide/Pineapple Leaf Filler-Reinforced Epoxy</td>
<td></td>
</tr>
<tr>
<td>Hybrid Composite Using TODIM Method</td>
<td></td>
</tr>
<tr>
<td>Angkan Bania and Saikat Ranjan Maity</td>
<td></td>
</tr>
<tr>
<td>Optimization of Planetary Gearbox Using NSGA-II</td>
<td>367</td>
</tr>
<tr>
<td>Abhishek Parmar, P. Ramkumar, and K. Shankar</td>
<td></td>
</tr>
<tr>
<td>Conjugate Heat Transfer Analysis for Flow Through Microduct Subjected</td>
<td>377</td>
</tr>
<tr>
<td>to Non-uniform Heating</td>
<td></td>
</tr>
<tr>
<td>Abhijit Borah and Sukumar Pati</td>
<td></td>
</tr>
<tr>
<td>Micro Electrical Discharge Milling of Titanium: Effects of Voltage</td>
<td>387</td>
</tr>
<tr>
<td>and Tool Rotation Speed</td>
<td></td>
</tr>
<tr>
<td>Siddhartha Kar, Pallab Sarmah, and Promod Kumar Patowari</td>
<td></td>
</tr>
<tr>
<td>Bio-plastic from Yam—An Ecofriendly Prospective</td>
<td>397</td>
</tr>
<tr>
<td>Susheel Kumar, S. K. Pattanayak, and Krishna Murari Pandey</td>
<td></td>
</tr>
<tr>
<td>Application of Box-Beihnken Method for Multi-response Optimization of</td>
<td>407</td>
</tr>
<tr>
<td>Turning Parameters for DAC-10 Hot Work Tool Steel</td>
<td></td>
</tr>
<tr>
<td>Sunil Kumar, Saikat Ranjan Maity, and Lokeswar Patnaik</td>
<td></td>
</tr>
<tr>
<td>Cost Analysis of an Off-Grid Solar/Wind/Battery Based Renewable</td>
<td>417</td>
</tr>
<tr>
<td>Energy System for Variable Load</td>
<td></td>
</tr>
<tr>
<td>Sujeet Singh, Krishna Murari Pandey, and K. K. Sharma</td>
<td></td>
</tr>
<tr>
<td>Design and Development of a Mini Sugarcane Harvester</td>
<td>427</td>
</tr>
<tr>
<td>M. A. Nagarjun, N. C. Mahendra Babu, and Manjunath M. Ullegaddi</td>
<td></td>
</tr>
<tr>
<td>Simulation and Experimental Performance Studies of a Computerized</td>
<td>441</td>
</tr>
<tr>
<td>Spark Ignition Engine</td>
<td></td>
</tr>
<tr>
<td>Pritam Jyoti Saikia, Partha Pratim Dutta, and Paragmoni Kalita</td>
<td></td>
</tr>
</tbody>
</table>
Machinability Study of Rubber using USM for Microdrilling
Pallab Sarmah, Tapas Debnath, and Promod Kumar Patowari

Design, Fabrication and Experimentation of Aqua Silencer for Diesel Genset
Neelutpal Ghosh, Sameer S. Gajghate, Sagnik Pal, and Swapan Bhaumik

Numerical Analysis OF PCM Within a Square Enclosure Having Different Wall Heating Conditions
Pallab Bhattacharjee, Sujit Nath, and Dipankar Bhanja

Numerical Modelling and Thermohydraulic Analysis of Circular Pipe Having Internal Vortex Generators
Binay Bhushan Bora, Mohd Zeeshan, Sujit Nath, and Dipankar Bhanja

Effect of Non-uniform Heating on Electroosmotic Flow Through Microchannel
T. Sujith, Sumit Kumar Mehta, and Sukumar Pati

Temperature-Dependent Random Frequency of Functionally Graded Spherical shells—A PCE Approach
Vaishali and S. Dey

Microwave Processing of Polymer Matrix Composites: Review of the Understanding and Future Opportunities
Tejas Pramod Naik, Ram Singh Rana, Inderdeep Singh, and Apurbba Kumar Sharma

A Comparative Study on the Hydrodynamic and Heat Transfer Behaviour of Conical Fluidized Bed with that of a Columnar Pressurized Circulating Fluidized Bed
Hirakh Jyoti Das, Rituraj Saikia, and Pinakeswar Mahanta

Study of the Effect of Welding Current on Heat Transfer and Melt Pool Geometry on Mild Steel Specimen Through Finite Element Analysis
Mohd Aslam and Chinmaya Kumar Sahoo

Study of Granular Food Material Drying in a Pilot-Scale Rotating Fluidized Bed with Static Geometry Dryer
Pavitra Singh, Pankaj Kalita, Pinakeswar Mahanta, and Hirakh Jyoti Das

Experimental Evaluation of Sand-Based Sensible Energy Storage System
Prasant, Sujit Roy, Biplab Das, and Sumita Debbarma

Purification of Biogas for Methane Enrichment Using Biomass Biochar and Biochar–Clay Composite
Deep Bora, Lepakshi Barbora, and Pinakeswar Mahanta
Experimental Investigation of Drying Characteristics of Tea in a Conical Bubbling Fluidized Bed Dryer 583
Plabon Tamuly, Hirakh Jyoti Das, and Pinakeswar Mahanta

Design and Development of a XY Positioning Stage Using Shape Memory Alloy Spring Actuator .. 593
Ashutosh Padhan and Yogesh Singh

Selective Etching of Aluminium 6068 Using Photochemical Machining .. 601
Jaswant Kumar, Tapas Debnath, and Promod Kumar Patowari

Microstructure and Mechanical Characterisation of Friction Stir Welded Inconel 718 Alloy ... 611
Sanjay Raj, Pardeep Pankaj, and Pankaj Biswas

Effect of Dual-Height Plate Fins on Phase Change Material Cooling Technique: An Experimental Study 619
Maibam Romio Singh, Asis Giri, and Pradip Lingfa

Dynamic Analysis of Parametrically Excited Coupled Beam-Based Piezoelectric Energy Harvester 631
Ranit Roy, Anshul Garg, and Santosha Kumar Dwivedy

An Overview of Wire Electrical Discharge Machining (WEDM) 643
Shatarupa Biswas, Yogesh Singh, and Manidipto Mukherjee

Comparative Analysis of Combustion Noise, Performance and Emission of LTC Diesel Engine with Multiple Injections 653
Sanjoy Biswas and Achintya Mukhopadhyay

Radial Basis Function-Based Probabilistic First-Ply Failure Analyses of Composite Spherical Shells 667
Himanshu Prasad Raturi, Subrata Kushari, and Sudeep Dey

Experimental Investigation of Dimensional Deviation of Square Punches Cut by Wire EDM of A286 Superalloy 677
Subhankar Saha, Saikat Ranjan Maity, and S. Dey

Multi-optimization of μ-EDMed Arrayed Microrods Using Gray Relational Analysis .. 685
A. K. Singh, T. J. Singh, R. Pongen, and Promod Kumar Patowari

Detection of Fault in a Bevel Gearbox Under Varying Speed Conditions ... 697
Vikas Sharma, Anand Parey, Abhimanyu Pratap Singh, Atanu Paul, and Yogesh Singh
CFD Analysis of the Performance of an H-Darrieus Wind Turbine Having Cavity Blades .. 711
Y. Kumar, A. R. Sengupta, Agnimitra Biswas, H. M. S. M. Mazarbhuiya,
and Rajat Gupta

The Effect of Negative Hardening Coefficients on Yield Surface Evolution .. 721
Praveen Kumar and Sivasambu Mahesh

Influence of Camber Ratio and Thickness Ratio on the Airfoil Performance .. 729
Sujit Roy, Biplab Das, and Agnimitra Biswas

Development of Modified Cyclic Plasticity Model to Simulate Cyclic Behaviour for SA333C–Mn Steel Under LCF Loading Conditions 739
Vibhanshu Pandey, Partha Pratim Dey, Niloy Khutia, and Suneel K. Gupta

High Speed Impact Studies of Kevlar Fabric with and without STF ... 749
M. Chinnapandi, Ajay Katiyar, Tandra Nandi, and R. Velmurugan

Comparative Study of Nano and Micro Fillers in EPDM/Silicone Rubber for Outdoor Insulator Application 761
S. Bhavya, Unnam Mahesh, R. Velmurugan, and R. Sarathi

Machinability Study for Slot Cutting on Glass Using Ultrasonic Machining Process .. 771
Anand Mohan Singh, Ranjan Majhi, and Promod Kumar Patowari

Mechanical Design of a Modular Underwater Rov for Surveillance and Cleaning Purpose 779
Abhimanyu Pratap Singh, Atanu Paul, Yogesh Singh,
and Koena Mukherjee

Large Eddy Simulation of Turbulent Slot Jet Impingement on Heated Flat Plate .. 795
Ghulam Rabbani and Dushyant Singh

Numerical Solution of Foreign-Gas Film Cooling in Supersonic Flow ... 807
Hitesh Sharma, Dushyant Singh, and Ashutosh Kumar Singh

Deposition of Tungsten and Copper Particle on CFRP Composite 815
Rashed Mustafa Mazarbhuiya and Maneswar Rahang

Performance Improvement of Turbine Blade Using Flow Control Techniques: A Review .. 823
Hussain Mahamed Sahed Mostafa Mazarbhuiya, Agnimitra Biswas,
and Kaushal Kumar Sharma
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric Analysis for Machining of Stainless Steel AISI (SS-430)</td>
<td>829</td>
</tr>
<tr>
<td>Using Photo Chemical Machining</td>
<td></td>
</tr>
<tr>
<td>Gaijinliu Gangmei, Jaswant Kumar, Tapas Debnath, and Promod Kumar Patowari</td>
<td></td>
</tr>
<tr>
<td>Fabrication and Characterization of Ramie Fiber Based Hybrid</td>
<td>839</td>
</tr>
<tr>
<td>Composites</td>
<td></td>
</tr>
<tr>
<td>Karanjit Kapila, Sutanu Samanta, and Sushen Kirtania</td>
<td></td>
</tr>
<tr>
<td>Multiphase Numerical Modeling of PCM Integrated Solar Collector</td>
<td>849</td>
</tr>
<tr>
<td>Bharat Singh Negi, Satyender Singh, and Sushant Negi</td>
<td></td>
</tr>
<tr>
<td>Computer-Aided Analysis of Solidification Time and its Effect</td>
<td>861</td>
</tr>
<tr>
<td>on Hardness for Aluminium Copper Alloy</td>
<td></td>
</tr>
<tr>
<td>Sasmita Tripathy and Goutam Sutradhar</td>
<td></td>
</tr>
<tr>
<td>Attribute of SiC Powder Additive Mixed EDM on Machining</td>
<td>869</td>
</tr>
<tr>
<td>Performance and Surface Integrity Aspects of Inconel 625</td>
<td></td>
</tr>
<tr>
<td>Ankan Das, Bhavani Tharra, V. V. N. Siva Rao Sammeta, and John Deb Barma</td>
<td></td>
</tr>
<tr>
<td>Enhancement of Thermal Performance of Microchannels Using</td>
<td>881</td>
</tr>
<tr>
<td>Different Channel Wall Geometries: A Review</td>
<td></td>
</tr>
<tr>
<td>Dipak Debbarma, K. M. Pandey, and Abhishek Paul</td>
<td></td>
</tr>
<tr>
<td>Experimental Investigations of Beeswax Based Composite Phase</td>
<td>891</td>
</tr>
<tr>
<td>Change Material</td>
<td></td>
</tr>
<tr>
<td>Durgesh Kumar Mishra, Sumit Bhowmik, and Krishna Murari Pandey</td>
<td></td>
</tr>
<tr>
<td>Investigation on Thermo-hydraulic Performance of Channel</td>
<td>901</td>
</tr>
<tr>
<td>with Various Shapes of Rib Roughness: A Review</td>
<td></td>
</tr>
<tr>
<td>M. K. Sahu, Kumari Ambe Verma, and K. M. Pandey</td>
<td></td>
</tr>
<tr>
<td>Interfacial Instabilities in Rotating Hele-Shaw Cell: A Review</td>
<td>911</td>
</tr>
<tr>
<td>Akhileshwar Singh, Krishna Murari Pandey, and Yogesh Singh</td>
<td></td>
</tr>
<tr>
<td>Performance Analysis of a Scramjet Combustor with Cavity for Mach</td>
<td>919</td>
</tr>
<tr>
<td>Numbers 3.0, 3.25 and 3.50 with Hydrogen as a Fuel</td>
<td></td>
</tr>
<tr>
<td>Namrata Bordoloi, K. M. Pandey, and K. K. Sharma</td>
<td></td>
</tr>
<tr>
<td>Study of Fuel Injection Systems in Scramjet Engine—A Review</td>
<td>931</td>
</tr>
<tr>
<td>Kumari Ambe Verma, K. M. Pandey, and K. K. Sharma</td>
<td></td>
</tr>
<tr>
<td>A Quantitative and Qualitative Review of Sustainable</td>
<td>941</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Tejendra Singh and Jinesh Kumar Jain</td>
<td></td>
</tr>
</tbody>
</table>
Impact Dynamics of a Viscoelastic Ferrofluid Droplet Under the Influence of Magnetic Field .. 961
Gaurav Kumar, Sudip Shyam, and Pranab Kumar Mondal

Reacting Flow Solver for Martian Atmosphere Conditions 969
P. Vicky Kumar, Anil Kumar Birru, and Vinayak Narayan Kulkarni
About the Editors

Prof. K. M. Pandey obtained B.Tech in Mechanical Engineering from BHUIT, Varanasi now known as IIT BHU in 1980. Dr. Pandey also did M.Tech in Heat Power from the same institute in 1987. Prior to joining REC Silchar, Dr. Pandey served in BIT Mesra, Ranchi, as associate lecturer for a period of 3 years and 6 months. Dr. Pandey did his PhD in mechanical engineering in 1994 from IIT Kanpur. He has published and presented more than 325 papers in international and national journals and conferences. Dr. Pandey has also served in Colombo Plan Staff College Manila, Philippines, in the year 2002 as faculty consultant seconded by Government of India. Currently, he is working as professor in department of mechanical engineering of National Institute of Technology, Silchar, Assam, India. He has also served the department in the capacity of head for two terms of 3 years. He has also served as member of Board of Governors of BIT Silchar for two terms. His research interest areas are combustion, high speed flows, technical education, heat transfer, internal combustion engines, human resource management, gas dynamics and numerical simulations in CFD area from commercial softwares. Dr. Pandey has got more than 70 SCI-indexed journal papers and more than 150 research articles are indexed in Scopus. His h-index in Scopus is 17; and 23 in google scholar. He has guided 14 students for PhD and 89 students for M.Tech so far.

Prof. R. D. Misra received his B.E. in Mechanical Engineering from Jorhat Engineering College under Dibrugarh University in 1991, M.Tech. in Energy Studies from Indian Institute of Technology Delhi in 1996, and Ph. D. in Thermal Engineering from Indian Institute of Technology Roorkee in 2004. He has joined as faculty in Mechanical Engineering in the National Institute of Technology Silchar in 1992. He has served NIT Silchar as Lecturer from 1992 to 2003, as Assistant / Associate Professor from 2004 to 2009, as Professor from 2010 to 2018 and as Professor (HAG) from 2018 till date. He has published around 40 papers in referred international journals. Presently He is a professional member (life) of the Indian Society for Technical Education and The Institute of Engineers (Fellow).
Prof. P. K. Patowari is currently a professor at the Department of Mechanical Engineering, National Institute of Technology Silchar, Assam. He obtained his B.Tech degree (Mechanical) from NERIST, Itanagar, and M.E. (Prod.) from Jadavpur University, Kolkata, and Ph.D. from the Indian Institute of Technology, Kharagpur. His major areas of research interests include Advanced/Non-traditional Manufacturing Processes Micro-Manufacturing, Computer Aided Manufacturing (CAM), Computer Numerical Control (CNC), Micro Electro Mechanical Systems (MEMS). He has published more than 30 papers in refereed international journals. Currently, he is the life member of professional bodies like Indian Society for Technical Education (ISTE) and Institute of Smart Structures and Systems (ISSS) and The Institute of Engineers (Fellow).

Prof. U. S. Dixit received his bachelor’s degree in mechanical engineering from the erstwhile University of Roorkee (now Indian Institute of Technology (IIT) Roorkee) in 1987, his M.Tech degree in mechanical engineering from IIT Kanpur in 1993, and his PhD in mechanical engineering from IIT Kanpur in 1998. He has worked in two industries—HMT, Pinjore, and INDOMAG Steel Technology, New Delhi, where his main responsibility was designing various machines. Dr Dixit joined the Department of Mechanical Engineering, IIT Guwahati, in 1998, where he is currently a professor. He was also the Officiating Director of the Central Institute of Technology, Kokrajhar (February 2014–May 2015). Dr Dixit has been actively engaged in research in various areas of design and manufacturing over the last twenty-five years. He has authored/co-authored 115 journal papers, 109 conference papers, twenty-seven book chapters, and six books on mechanical engineering. He has also co-edited seven books related to manufacturing. He has guest-edited eleven special issues of journals. Presently he is an Associate Editor of the Journal of Institution of Engineers (India), Series C, and the Regional Editor (Asia) of the International Journal of Mechatronics and Manufacturing Systems. He has guided twelve doctoral and forty-four masters’ students. Dr Dixit has investigated a number of sponsored projects and developed several courses. Presently, he is the Vice-President of the AIMTDR conference.
AI-Based ANN Modeling of Performance–Emission Profiles of CRDI Engine under Diesel-Karanja Strategies

P. Sandeep Varma, Subrata Bhowmik, Abhishek Paul, Pravin Ashok Madane, and Rajsekhar Panua

Abstract The current investigation highlights the impact of Diesel–biodiesel blends on performance and exhaust emission profiles of a single-cylinder, common rail direct injection (CRDI) engine. Experiments were performed at constant engine speed (1500 rpm) and three engine loads (50, 75 and 100%) under high fuel injection pressure (900 bar) with volume proportions (10, 20 and 30%) of Karanja with Diesel. Utilizing CRDI engine experimental data, an artificial intelligence (AI)-affiliated artificial neural network (ANN) model has been created with the intention of forecasting brake thermal efficiency, oxides of nitrogen, unburned hydrocarbon and carbon monoxide emissions. From various tested ANN models, one hidden layer with three neurons along with logsig transfer function has been noticed to be optimum network for Diesel-Karanja paradigms under high fuel injection pressure. While developing the optimum model, standard Levenberg–Marquardt training algorithm has been employed. The optimum ANN model is capable to estimate the CRDI engine performance–emission profiles with an overall correlation coefficient value of 0.99742, wherein 0.99783, 0.99951 and 0.99969 for training, validation and testing datasets, respectively. Results made clear that the formulated AI-based ANN model is viable for predicting the existing CRDI engine performance and emission profiles of Diesel-Karanja blends operating under high fuel injection pressure.
Keywords AI · ANN · CRDI engine · Performance–emission prediction

1 Introduction

The global energy demand in transportation sector has immensely relied on fossil fuels [1]. Fast reduction of petro-fuels and their deleterious effect on environment are creating huge concern over usage of fossil Diesel in conventional Diesel engines. However, Diesel engines are acknowledged for their operational reliability, higher thermal efficiency and lower carbon monoxide (CO) and unburned hydrocarbon (UBHC) emissions [2]. Despite these benefits, stringent emission mandates and limited fossil Diesel reserves may scotch the production and employability of conventional Diesel engine in coming years. Accordingly, most of the research is now intended toward finding an alternative renewable fuel source with acceptable performance and emission characteristics. Research studies [3–6] show that biodiesel has great potential to meet future global energy demand.

The properties of biodiesel primarily depend on the feedstock and processing technology, but usually it has ~11% (by mass) fuel-bound oxygen, high cetane number and low aromatic content when compared to fossil Diesel [5]. Biodiesel also exhibits high flash point temperature which is beneficial for safe storability and transportation [4]. However, the problematic issues of biodiesel are high viscosity and density which result in inferior spray characteristics [2]. Many researchers [3–6] have concluded that the usage of biodiesel in CI engines has resulted in approximately higher oxides of nitrogen (NO\textsubscript{X}) emissions and decreased particular matter (PM), CO and UBHC emissions. In a study by Lee et al. [7] concurred that biodiesel blends have resulted in lower brake thermal efficiency (BTE) and torque but higher NO\textsubscript{X} emissions than pure Diesel operation.

In order to study the performance–emission profiles of a compression ignition (CI) engine over its entire operational range, arduous experimentation is required. To prevail over this problem, computational models are necessary. In this present study, artificial neural network (ANN) technique has been chosen because of its ability to learn, model curvilinear process and flexibility to changes in real time. Yusuf cay [8] developed an ANN model by using feed-forward back propagation method and demonstrated the viability of ANN model in forecasting the performances and exhaust fumes of gasoline engine. In another study Bhowmik et al. [9] devised an ANN model with high accuracy for estimating the indirect injection engine outcomes under ternary blends of Diesel, kerosene and ethanol. Paul et al. [10] discussed the effect of diesel–ethanol pilot fuel on performance–emission characteristics of compression ignition engine operating in dual-fuel mode with compressed natural gas as the main fuel. They created ANN model by using experimental data and stated that the model has good relationship between estimated and experimental values with an overall correlation coefficient (R) value of 0.99689. Bhowmik et al. [11] devised an ANN model for predicting output parameters of Diesel engine. The proposed model has given R value which ranges from 0.999312 to 0.999852.
In this study, first experimentation was performed with Diesel-Karanja blends to evaluate performance and emission characteristics. Later, by utilizing this experimental data, an ANN model was formulated by considering the engine load and Karanja biodiesel share in the blend as input parameters and BTE, NOX, UBHC and CO as output parameters.

2 Experimental Setup and Procedure

A single-cylinder, four-stroke, water-cooled, CRDI engine was used for the present investigation. The engine is synchronized to a crank angle sensor for measuring engine rpm. An eddy current dynamometer is synchronized to the CRDI engine for load measurement. By employing, NIRA © -based centralized data acquisition system, each and every instrument fitted to the engine is interfaced to the computer. Gaseous emissions from the CRDI engine are measured by using an AVL MDS 250 and an AVL 437 smoke meter. The engine experiments were performed at three different load conditions, namely 50, 75 and 100% for all the fuel blends (B10, B20 and B30), and high fuel injection pressure of 900 bar is employed for injecting fuels into combustion chamber. During the experimentation, speed of the CRDI engine is kept constant at 1500 rpm. Prior to experimentation, the engine was first run on fossil Diesel fuel at the same operating points to acquire baseline data. To increase the authenticity, the engine experiments were conducted three times, and their mean value has been considered as the final output. Figure 1 encapsulates the schematic of CRDI engine setup.

3 ANN Modeling

ANN is a computational model based on biological processes, predominantly inspired by human brain. Its architecture involves three layers, for instance, input layer, hidden layer and output layer. The experimental data provided to ANN is divided into three sets, namely training dataset, validation dataset and testing dataset [11]. Training dataset is utilized to improve the generalization of the network in predicting the input–output relationship, validation data is used to lessen overfitting of network, and testing data is utilized to validate the generalization capability of model [12]. Complex nonlinear engineering problems can be simulated with the help of neural network tools.
3.1 Selection of Input and Output Parameters

In this study, load and Karanja biodiesel share in the blend are considered as input parameters for predicting the output parameters, namely BTE, NO\textsubscript{X}, UBHC and CO. While developing ANN model, 70\% of the experimental data was defined for training, 15\% of the experimental data was defined for validating, and the rest of the 15\% data was utilized for testing the network.

3.2 Selection of Transfer Function

The transfer function introduces curvilinear transformation into neural architectures so that the model is capable of having nonlinear match between input and output layers [14]. The performance of the neural network is greatly affected by selection of appropriate transfer function. Three basic transfer functions that are available in MATLAB© are logsig, tansig and purlin. Research studies [12–14] concluded that
logsig transfer function is appropriate for predicting the output parameters of a Diesel engine.

3.3 Selection of Training Algorithm

In simple, training algorithm is the method followed for updating the connecting weights and bias in order to make improved generalization of input–output relationship. In this study, single hidden layer feed-forward neural network has been used by employing Levenberg–Marquardt back propagation training algorithm (trainlm). Many researchers [15–17] reported that trainlm is fast compared to other training algorithms and it has superior convergence.

4 Result and Discussion

Various network topologies were created by changing the number of neurons from two to twenty-five for each of the three basic transfer functions. All the constructed topologies were tested to measure their individual performance. The optimum model has been noticed to occur with logsig transfer function, and the topology comprises of three neurons in its hidden layer, two neurons in its input layer and four neurons in its output layer. Figure 2 shows the overall R value obtained for the optimum model. The overall R value of the optimum ANN model is 0.99742 wherein 0.99783, 0.99951 and 0.99969 for training, validation and testing datasets, respectively.

All the test fuels containing any proportion of biodiesel have shown decreased BTE compared to mineral Diesel operation. This is due to higher viscosity and existence of long chain of unsaturated fatty acid molecules in Diesel–Biodiesel blends compared to mineral Diesel. Among all the test fuels, the D90B10 fuel sample has shown maximum decrease in BTE, which when compared with 50% engine load mineral diesel operating condition it was found to be 15.9% lesser. The developed ANN model has estimated BTE with an R value of 0.998266. Figure 3 shows the comparison of ANN predicted BTE and experimental BTE. Hence, from the value of R, it can be inferred that ANN model can be employed for estimating the BTE of CRDI engine energized with Diesel–Biodiesel blends operating with high fuel injection pressure.

NO_X emissions of Diesel–Karanja blends have been observed to be lower than Diesel fuel. Among all chosen test fuels, the D70B30 fuel sample has shown maximum decrease in NO_X emissions. It was found that this fuel sample has resulted in 32.3% lesser NO_X emissions at 50% load condition when compared to pure Diesel. The fabricated ANN model has predicted NO_X emissions with an R value of 0.9983; from this, we can conclude that the suggested ANN models has proved its viability in approximating the poisonous NO_X emissions (as shown in Fig. 4). Biodiesel blends has resulted lesser UBHC emission than Diesel fuel. The minimum UBHC emissions among all the test fuels were noticed for D70B30 fuel sample.
When compared to mineral diesel operation, it was found that this fuel sample has shown 56.98% lesser UBHC emission at 100% engine load. The fabricated ANN model has predicted UBHC emission with an R value of 0.9880. The comparison of ANN model mapped UBHC and experimental UBHC is shown in Fig. 5. By comparing the R value of UBHC emission with that of BTE and NOX emissions, it can be deduced that the proposed model has lesser accuracy in estimating the UBHC emission compared to BTE and NOX.

At most experimental conditions, CO emissions resulted from Diesel–biodiesel blends were higher compared to pure Diesel operation. This is due to higher viscosity and existence of long chain unsaturated fatty acid molecules in diesel–biodiesel blends compared to mineral Diesel. The developed optimum model has predicted CO emission with an R value of 0.9810. Figure 6 delineates the comparison of ANN model mapped CO and experimental CO. By comparing the R value of CO emission
Fig. 3 Comparison of experimentally measured BTE with ANN predicted BTE

Fig. 4 Comparison of experimentally measured NO\textsubscript{X} with ANN predicted NO\textsubscript{X}

with that of BTE and NO\textsubscript{X} emissions, it can also be deduced that the proposed model has lesser accuracy in estimating the CO emission compared to BTE and NO\textsubscript{X}.
Fig. 5 Comparison of experimentally measured UBHC with ANN predicted UBHC

Fig. 6 Comparison of experimentally measured CO with ANN predicted CO

5 Conclusion

The major findings from the experimental cum AI-based ANN model of CRDI engine fueled with various Karanja biodiesel share and engine loads under high fuel injection pressure are as follows:
• At every load condition, Diesel-Karanja blends have shown decreased BTE than Diesel fuel operation.
• NO\textsubscript{X} and UBHC emissions of Diesel-Karanja blends were lower than fossil Diesel at every load condition.
• At most experimental conditions, CO emissions resulted from Diesel-Karanja blends were higher than pure Diesel operation.
• The model developed with logsig transfer function and three neurons in its hidden layer has been noticed to be the optimum model for predicting performance–emission profiles of diesel–biodiesel blends under high fuel injection pressure.
• The optimum model has shown overall R value of 0.99742 wherein 0.99783, 0.99951 and 0.99969 for training, validation and testing datasets, respectively.

ANN has proved its viability in predicting the performance and emission parameters of CRDI engine fueled with Diesel-Karanja biodiesel blends operating under high fuel injection pressure. By utilizing the developed AI-affiliated ANN model, the present investigation can be extended to map the output values at any distinct points of the input parameters under Diesel-Karanja strategies without conducting new experiments which will eliminate the experimental cost, time and effort.

Acknowledgements This research work was supported and funded by the Science and Engineering Research Board under the Department of Science and Technology, Government of India, under the Grant no. EEQ/2016/000058 for the project entitled “Effect of biodiesel-ethanol-Diethyl ether blends on performance, combustion and emissions of a CI engine under Hydrogen, CNG and LPG dual fuel mode.”

References

ANFIS Prediction of Performance and Exhaust Emission Characteristics of CRDI Engine Fueled with Diesel–Butanol Strategies

Vivek Kumar Mishra, Subrata Bhowmik, Abhishek Paul, Ajay Yadav, and Rajsekhar Panua

Abstract The present work investigates the ability of oxygenated Butanol on performance and exhaust emission characteristics of a single-cylinder, four-stroke, water-cooled, common rail direct injection (CRDI) engine. Experiments were performed at constant engine speed (1500 rpm) and six different load conditions, varying from 5 to 30 Nm. Based on CRDI engine experimental data, an artificial intelligence (AI)-affiliated adaptive neuro-fuzzy inference system (ANFIS) model has been formulated for predicting the output parameters, namely brake thermal efficiency (BTE), brake specific energy consumption (BSEC), oxides of nitrogen (NOX), unburned hydrocarbon (UBHC) and carbon monoxide (CO) by considering the engine load and Butanol share in the blend as input parameters. With the increasing Butanol share in the Diesel–Butanol blend, the BTE and BSEC were significantly increased, and exhaust gas emissions, especially NOX and CO, were also reduced. The developed AI-based ANFIS model has the capacity of mapping the relationship between input–output parameters of the CRDI engine with good accuracies. In this study, the statistical performances obtained from ANFIS predicted model are (0.0000107–0.0000755) of mean square error, (0.000353–0.001533) of mean square relative error, (0.999722–0.999939) of correlation coefficient and (0.999444–0.999878) of absolute fraction of variance, which elevated the model capability to a higher stage under Diesel–Butanol strategies.
Keywords Artificial intelligence · ANFIS · CRDI · Performance–emission mapping

1 Introduction

In vehicles like buses, trucks and earth moving machineries, high torque is needed. The higher torque can be produced by the utilization of Diesel engines. Diesel engines have been broadly used to move heavy loads. However, the usage of conventional Diesel fuel in internal combustion engines is one of the major issues for air pollution, due to the high level of exhaust gas emissions, such as particulate matter (PM), oxides of nitrogen (NOX). In recent days, to reduce exhaust gas emissions, from Diesel engines, researchers have shifted toward renewable and eco-friendly sources of alternative energy. Many alternative fuels are available like alcohols, biodiesel, etc. [1]. Among all alternative fuels, alcohols have shown better effects to decrease the emissions from conventional Diesel engines [1]. Alcohols are oxygenated fuel and contain a low amount of sulfur and carbon content as compared to conventional Diesel fuel. Alcohol fuels are restricted for their direct use in Diesel engines because of their poor cetane number [2, 3]. Among various alcohols, the autoignition temperature of Butanol (365 °C) is less than ethanol (479 °C) and methanol (434 °C) [4]. When the blend of Diesel–Butanol is used in the compression ignition (CI) engine, it has high ability to ignite easily. Dogen [5] has concluded that with the increasing proportion of Butanol in Diesel, the performances of the CI engine are significantly improved along with NOX and smoke emissions. Nour et al. [6] investigated that the addition of Butanol share in Diesel, brake thermal efficiency (BTE) and brake specific energy consumption (BSEC) relatively improved alongside NOX, unburned hydrocarbon (UBHC) and carbon monoxide (CO). Compared to other alcohol fuels, Butanol has a higher cetane number and less corrosion and oxygen content. Due to these properties, it is a more suitable additive in CI engine operation than other alcohols [5, 6]. By the process of fermentation of biomass, Butanol can be produced, especially from wastage of plants, corn and algae. Because of its inherent fuel properties and availability, Butanol nowadays is widely used in CI engine operation to partially replace the dependency on conventional Diesel and reduce higher exhaust emissions.

Using the artificial intelligence (AI)-based adaptive neuro-fuzzy inference system (ANFIS) model, the majority of the researchers have developed their model in order to predict the input–output relationship of CI engine [7–9]. Hosoz et al. [10] reported that ANFIS model is a combination of both neural network and fuzzy logic principles. Due to this combination, compared to other artificial intelligence models, this model is able to forecast very efficiently the engine output parameters in a short time. ANFIS also has a great ability to make the fundamental relationship between input and desired output parameters of any sector [11]. Bhowmik et al. [12] surveyed the indirect injection engine outputs for Diesel–Kerosene–Ethanol blends using the ANFIS approach. They reported that the developed model has an overall correlation