Software
Engineering for
Absolute Beginners

Your Guide to Creating Software
Products

Nico Loubser

ApPress’

Software Engineering
for Absolute Beginners

Nico Loubser

Apress’

Software Engineering for Absolute Beginners

Nico Loubser
London, UK

ISBN-13 (pbk): 978-1-4842-6621-2 ISBN-13 (electronic): 978-1-4842-6622-9
https://doi.org/10.1007/978-1-4842-6622-9

Copyright © 2021 by Nico Loubser

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6621-2. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6622-9

This book is dedicated to Kim,
who keeps me going when I feel like stopping.

Table of Contents

About the AUthOrccecirrrmrmmmssssssmmmrrr s s s s s s snnnnnsnnnns XV
About the Technical ReVIEWETcousrrrsmmmssssnssssssssssssssssnsssssssssssssnnnns XVii
Acknowledgmentsccccuuseemmmsssssnnmmssssssssnsssssnssssssssnnsssssssnnssssssnnnnsssss Xix
L0 0 [T (] | XXi
Chapter 1: Editors.......uueeeessmmmmmmmmmsssssssssmmmmmmssssssssssssssssssssssssssssssnsnns 1
The Different Families of Programming Editors..........cccccevrirvnnnnincninsencnienne 2
Shell-BASEA EAITOrS ...cocvevererrrerirerirerisersserssesssesssesssesssesssesssesssesssesssesssesssessssssses 2

=Y =0 (0] 3

| 4

The Benefits of an IDE or an Editor like VS COUEccevevrveerreerreerreesseesseesesssessses 5
Installing Visual Studio COUE..........coemrererererererereer e 6
WOPKSPACESceueruerreieirise et n s r s st e s s s p s 6
BUIIE=IN FEATUIESvveiveerereereeerseesssesesseessssessseesssessssssssssesassessssessssessssessaseesne 7
Features 10 INSTAIL.........ooceereveereeercree s s s e e sse e s e e s e s nessaneesnrenane 9
SUMMANY....eieeeresere s s e e e e 10
Chapter 2: Containerizing Your Environment.........cccocccnmnnssnnnnnssssnnnns 11
What Are CONTAINEIS? ..cvveiviiiiiiiiniriisessesse e sssesssesssesssesssesssesssesssesssssssesssens 11
The Main Components of Docker EXplainedcccovvvververiennnensensenenessensensenns 14
THE DOCKEITIIE .uvereerrerseerseeiseesssesssesssesssesssessesssesssessesssesssesssesssessesssenssensnens 14

The DOCKEr IMAQEcocveririerie e s s 15
DOCKET CONTAINEIS .vevuvirrirreririrssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssessnes 16

TABLE OF CONTENTS

SEtUP AN USAQE.......eiverererrererrerrerersessssesessessessssessessessssessessesaesssssssessesssssssessenses 16
Preparation.........ccvvvnne s 16
How 10 InStall DOCKETccovvierierieerincense s 17
Creating the Dockerized Environments for Your Software’s Infrastructure 19
Preparations Before You Start COOKING.........cccvverierererserierensesensessessesessessenaes 20
First Docker Image and Containercccvvververierenensenseseseesessesessesessessesees 20
Building the Image and Pushing It to the Repositoryc.ccocvvrvererenseriennen 22
Pushing the Image to @ Docker RepoSitoryccccuoevrrviererensenserseseesessensenaes 26
Docker Orchestration with DoCKEr COMPOSE.......ccvvverrerserereesensersessesessessenses 27
Final Docker EXPErimentcccevevrienienennsensese e sessese e ssesesessessssessesaesaes 31

Docker Checklist and Cheat Sheet............ccovriiinnnnnnnsss s 34
Docker COmMMANGScovurmiemnereressssse s s 34
Docker-compose COMMANS.......c..corererrererrerersersersessssessessessesessessessesessessesaes 35

Chapter 3: Repositories and Git..........ccccrssmrmsssmsmsssnsssssssssssssssssssssssns 37

A Word About Windows Git Usage and Hidden Filesc.ccccovoeereennscnerencnnnnes 37

What IS SOUrCe CONTIOI?.......ccoveeeerererreserese e sesssnens 38
Additional FUNCHONAIILYcccvveereneneresers s sensenens 4

Installing Git and Creating a GitLab Account.........ccccovreenerrnsnnnesenese e 41

0T o T RS 42

0] 01111 44

BranChes......ccc o 45

A More AdvanCed USE CaSeccoveererererrrnereneserseneressesesese s sessesessesessssessenes 49

Merging CONFlICES.......ccoerreeerrererese s 51

Removing the Need to Type Your Password Every Time: SSH.........c.cccevcviniennene 54

GILIgNOTE....veeeeert et e 56

GIT STASH e ————————— 57

Qit reSEt and FEVEITccevcere e e s 58

Cheat SHEEL.........cceceerer e 60

TABLE OF CONTENTS

Chapter 4: Programming in Python..........cccccnnmmnnnnnsnsnnnnssssnnssssssnns 63
What IS Programming? ... sesesesess s esessesessesesessesssssnens 64
PYENON ... e 65

Setup for This Chapter and How 10 Use l........cccccoovvrvrvninnsncncnesnsinennens 65
372 L] [66
Commenting YOUr COUEcccverernnricniern s se s s 67
L2 L 10 T 67
Sequences and MapS.......cccvrn e ————————— 75
LiStS and STHNGS.....cceoerererererereseresesese s s sennes 76
TUPIES et 79
When to Use a List and When to Use a TUPIE.......ccovvrvnerenncenicnesensenennens 79
DICLIONANIESeeeeeeeereee e 80
Decision-Making Operators and StruCtures...........couvvvreneresesssmsessesesesesessesenns 81
OPEIALOIS .. et e e s e 81
Scope and Structure of Python Code..........cooeeererrnnenrenernseseseses e 90
Control STAatemMENtS..........ccoveeerercrrrere e s 91
FUNCLIONS ... s 99
CUSTOM FUNCLIONS......ccciiiciresere s s 99
Classes and ODJECTS........ucerrrrerererereserrssesrsese s srssesenns 106
The Anatomy Of @ ClaSSccvvereresernsesenessre s senns 108
Instantiating the Class..........ccvrrrenernsmnnsesnesersse s sesesesennes 109
INNEFTANCEoovreeereer e 113
POIYMOIPRISIM......ceveercer e 115
COMPOSIHION...c.eiiirrrr 116
MagiC METNOUSccervecrereere e 116
EXCEPLIONS....ccvi i e s 118
The Anatomy of an EXCEPLIONccceerveerenesenesesssesese s 119
Raising an EXCEPLioNccovvveressncsre e 120

vii

TABLE OF CONTENTS

Catching an EXCEPLiON........cccvrevevrrnienie s s s s s e s ssssesesaesnes 121

Writing an EXCEPLION........ccccvveriererrier s sae e 121

IMPOMS .. ————— 122

Static ACCESS 10 CIASSESc.veccrereerreereeereree s 124

Cheat SNEEL........ccoeeeererrer s 125

S0P ettt —————————— 125

LT 10 S 126

AITAYS ... resse e se s s s e r e e e ne e 126

CoNtrol StatemMENtSccovevrrererere e s 127

FUNCLIONS ... 127

ClASSES ... e 128

EXCEPLIONScoerecieicscr et e 129

IMPOM ... —————————— 129

RETEIBNCE. ... et 129

Chapter 5: Object Calisthenics, Coding Styles, and Refactoring....... 131

0bject CaliIStNENICSccveererrrrirrere et sere s s e sre s sae e s saesnens 132
1. Do not exceed one level of indentation per method. (Or rather,

limit the levels of indentation as much as you can.)ccecevevvvercernene 133

2. Do not use the else KEYWOIdccvvvverinsnsnne s 134

3. Wrap all primitives and Strings.......cccoovvrvrreriennnnsenienesessessessessssessessenes 136

4. Use only one dot Per liNe........cccvcvverevenensenieneses s sessessessessssessessees 137

5. D0 N0t @DDreviate ... ———— 140

6. Keep entities Small........c.ccocrivriniennnnnne e 140

7. Limit classes to use no more than two instance variables..............c....... 140

8. Use first-class COIIECLIONSccccvevereiernsernesessse s 141

L T (0 T o 0 [R 143

viii

TABLE OF CONTENTS

{00 110 TS 47 O 144
I 1] o S 145
CommeNnting YOUr COUEcceeererererrereressesessessessesessessessesssssssessesssssssensesaes 145
Maximum Line Length.........ccocrvrrninvnin e 149
INAENTALION ..o ———————— 149
BIANK LINES.....cccovriiriecirerisssseese s s e sssss 151
ENCOUING...uiitiierererirrerere st ss s sa e s e e saesnese e e naennens 151
1] 010 S 152
LTy (=T 0= T RS 152
Naming CONVENLIONS......c.cccvververieriererserese s sese s sse s ssessesessessessessssessessens 153

(1 T0 L G T T T R 156

RETBIBNCES ..ot 157

Chapter 6: Databases and Database DeSign........ccccuussemnmmsssssnnnsssssnns 159

Three Things You Can Do with Dataccovevnnenenenernsesnsesesesesesesessesessenens 160

Overview of Database System Components........c.cccovevresernsesssesenesesensenenns 161

Setting Up YOUr DBIMS........cov e nirserese s sesessesresessessessessssesessesasssssensesnens 162
POMS .. ——————————— 163
ENVIFONMENT ... s 163
VOIUMES ...t s 164
The Final DOCKEr File ... sssssssssesens 164
Viewing Your Database Using AAMINEr........ccccooevvininieniennsensessesesessessessens 165
Cleaning Up and Pushing to the Remoteccocucevnvenenenennsenensesesesennnnes 168

Preparing Your Database.........ccocvverrerrerennensenessnsensesessssessessessessssessessessssessessenes 169

o 10 LT S 170
INABXES ... e 170
INAEX CAVEALSccecrerirrsceese s 171

ix

TABLE OF CONTENTS

DAl TYPES ..t e 171
Creating a Database...........ccovevrncrne e s 172
Creating the Table........ccccvivvrnrcr 174
Filling the Database with Dataccccocvvinininnsnsn e 175
Your First SAL QUETIES.....cuuuivrrerrrrrrirereresesesesssssssesssssssssssssssssssssssssssssssssssenes 175
Normalizing the Current Classes Table ..o 180
First NOrmMal FOMM ... 181
Second NOrmal FOrM........coocoeiirercrecrereses e 182
Third NOrmal FOIM ..o 188
Last WOrd 0N JOINScc.coceeeeererererenereereseses e s seens 190

0] T 1 o 191
Cheatsheet and ChecKIiStcccuoevrereresernseseneses s seseenes 191
REfEIBNCESciveeeerreere et e 192
Chapter 7: Creating a RESTful API: FlasK.......ccuecummmsssnnnnsssssnnnnnsssnnns 193
L (L= 5 (0] S 194
WHAL IS REST? ..o sssssss s s e ss e sssssssssssssssssssnnas 195
USON .. 196
HTTP VEIDS ...vvvtctcieeceserese s sssssssssss s s s e sssesssssssasanas 197
REST QUETY ROULES......cccoreirirrerine st se s 199
HTTP Status COOE.......ccerrerererereereseesesesssssssssssssssssssssssssssssesesesesessssssssssanns 199
HATEQAS........oooiietreririresesese s sa s e se s s s s anas 200
The Technology YOU Will USEccceevvninennnnnineness s s sesessesnes 201
Setting Up the ENVIroNmMEeNt ..o 202
Creating the GitLab ProjecCt.........cccoovrerrerrrererenerssesesese e 202
PrOJECE LAYOUL.......ceeereecrereere e s s 203
Creating the docker-compose and Docker Files.........ccccovevvvnvnienenenseniennes 204
The Final Steps: CoUINg.......coverererenerrrerere e 216

TABLE OF CONTENTS

The ORM VEISION.....covvuieieeereresssessese e e e e s e s s s sessssans 228
GET ENAPOINTcoveiieirerereesensese e sessessessessssessessessesessessessesssssssessessssessessesaes 231
POST ENAPOINT.......cceieriererrrrerrereresessesesessssesse e ssesessessesaessssessessessessnsessens 231
PATCH ENApPOINTcceorererirsersere e ses s ses e s sse e sessesaesessessessessssensessens 232
DELETE ENAPOINtcovoviirerereseseesesesesss s sssssss e e sesesesesssssssanas 232

Takeaway 0of ThiS CRAPLErcccvrerererrerrereresessere e ssesesesse e se s ssessesessssessesees 233

RETBIBNCES ..ot 233

Chapter 8: Testing and Code Quality.........cccmrmsssnnnmmssssnnnssssssnnsnssssnnns 235

Overview of Code Quality STEPS......ccocvrvrrrererrnsmsrssesrsese s sessenes 236

Automated TESHINGcccvecerrerrrere s 237
UNIETESES ..t 238
How 10 Run the UNit TEStcccceervsrnenersse s s sessenens 242
INtEgration TESTSucucverernrerrre s 242
How to Run the Integration Testccccvverininninniss e 244
A Last Issue and Some Refactoring.........ccueeeresernsesenesesssssnsesesssesensenenns 247
Testing the New Code........ovceverererenernsesrseser s 250

The Downside of Automated Testing.........cccovvevnrennisnnsrnesse e 252
The Validity of the TESES.....c.ccccvrrererirrnserrreser e 252
TIME PrESSUIE...c.vecertirerersesesissesssse e se e se s e e srs s 253

PEEI RBVIBWS ...t 253

L =Ll I 0]] S 255

Staging Environment and UAT...........ccorrnnnsnnrc e 256

Chapter 9: Planning and Designing Your Codeccccceernssssnsnnnnnnnnnas 257

Software Development LIfECYCIEccovvevvrererenernsesnesessse s 258
Why Use a Software Development Lifecycle?c.cocumiiisnennnsncscsenens 258
Steps in the SDLC........ovirr s 259

TABLE OF CONTENTS

MOAEIIING .. e e 263
Where Does Modelling Fit In the SDLC?c.ccooevvvnverienienensensenessesessessensens 263
Why Create Diagrams and MOdEeIS?cccccvverrernrensersesienessensessesesessessensens 264
TOOIS ... ————————————— 265
High-Level Models and Diagrams........ccceoevvrerveresensensessesessssessessessssessessens 265
LOW-LEVel MOTEIScccerrriririirce e 275

SUMMAIY . veitetrereresee s ressesesersessesae e ssessesaesessesaesaess e e ssesaesassessessesasssssensessens 291

Chapter 10: SeCUritYcccrismmrrssnmmssansmsssnsssssnsesssnsesssnsesssnsssssnnssssnnsnss 293

SECUNNG YOUF COUE......eeeeerercreree e e 294

COdE-LEVEI SECUNTYccvrreerrrerereserese s e nenns 295
SQL INJECLION ..vvvveeeeereresrssee e se e s e sen s 295
Cleaning Variablescccoverrererenernscsneser s 297
Keeping Errors @ SECIet........ccouorveervenerenernsesese e s sessenens 300
XSS e ————————————————— 301
CSRF ... e 303
Session Management ... s 304

System-Level SECUNTYcoverriererise e 305
Keep Your Systems Up 10 Date ..o s sesensens 305
Databhase USEIScccerrererenmrrnsesesesesssse s e s ssssesessssessssesenssssnssnens 306
0] (TSRS 307
DOCKET IMAQES.....crreerreererererreserrssesessesesssse s sessesessssessssesssssssssssessnsssssssnens 307
HTTPS ...ttt bbbt 307
PaSSWOIA POLICYccerveerereerrenereesesesese e s sensenens 308

SoCial ENGINEEIINGcccvereerrrerrnesesese s e sessssenns 309

L1114 OO 310

xii

TABLE OF CONTENTS

Chapter 11: Hosting and CI/CDccccuusssennnmsssssnssssssssnssssssssssssssssnns 313
TYPES Of HOSTING.....ccevcircrececir e 314
Cloud and Serverless TeChNOIOGIESccocverererernsereniesere s 314
Shared HOStING ..ot 315
Virtual Private HOSHINGccccvvrverrrcere e 316
ClOUT HOSEING ..veveeeerere s e s e rse s e s e s e e se s e s saesae e ssesnesassessenaesnes 316

e =] 317
Which Hosting Technology t0 ChOO0SE?........cccvevererserieresessessesessesessessensens 317
Continuous Integration and Continuous Deployment (CI/CD).......c.ccccevvrervrcnene. 318
Creating the PIpelinecccvireinnnini s 319
SUMIMANY....eeeererereree e s e e e e re e e e e 323
1T - 325

xiii

About the Author

Nico Loubser is a software engineer

by trade, with 16 years of experience in
various industries and technologies. As an
experienced team lead, he has mentored
numerous developers and has developed a
passion for it, which was the inspiration for
writing this book. He believes that the

[' so-called software crisis' can be alleviated by

proper mentorship, but that mentorship is not
always available. He currently lives in London, where he seeks exposure
to an even greater variety of ideas, methods, and technologies in today’s
software development industry. He holds a post-graduate degree in
software engineering from the University of South Africa.

'https://en.wikipedia.org/wiki/Software crisis

https://en.wikipedia.org/wiki/Software_crisis

About the Technical Reviewer

S Andy Beak is an experienced technical
manager with an extensive development

background and sound decision-making
skills. He is the author of a cybersecurity
microdegree course for the EC Council and the
author of the Zend PHP study guide published
by Apress. He’s naturally entrepreneurial and
able to zoom in on implementation details
while retaining a “30,000 feet” overview of

the organizational strategical context in which development occurs. An
evangelist for agile working practices and delivery automation, he follows
the entire development process and has a high degree of ownership for the
quality of the finished product.

xvii

Acknowledgments

This book would not have been possible without all of the junior
developers I have mentored over the years, as this is where my inspiration
for this book originated.

I would also like to thank Andy Beak for reviewing this book, and in
doing so, improving the quality of it.

Lastly, to the team at Apress who helped me produce and publish this
book, thank you very much.

Xix

Introduction

Writing software is a multi-disciplinary exercise. This makes it especially
difficult for people who want to learn how to create software but are
without someone guiding them and helping them navigate their way
between all of the technologies and methodologies there are to learn.

The aim of this book is not just to teach, but also to guide the newcomer,
showing where the learning efforts should be concentrated, what is good
practice, and what are some of the industry standards in the current
software development industry. This book bridges the divide between just
writing code and creating software systems.

About This Book

This book is not just for the complete newcomer. It is also for someone
who can already write code, but is interested in creating complete software
projects, from inception to delivery, as well as software design practices.

As a software developer, I can wholeheartedly tell you that writing code
is only a part of today’s software development paradigm. In today’s world,
you need to have learned, and in some cases mastered, a set of specific tools,
skills, and methodologies that will help you achieve your goals as a creator
of software. Whether that goal is to become a hobbyist developer, whether
you want to create a startup or work for a corporation, good software
engineering skills are very important. Most people will pick up a book about
programming, or go on the Internet and start learning how to write code.
Very few people will read a book on software engineering principles, and not
everyone is so lucky to start in a job where serious engineering principles are
followed and enforced and where proper tools are used.

INTRODUCTION

Why Are Good Practices Essential?

Certain principles in software development remain the same, regardless
of which company you work for. If you consider a company with 200
employees and a 1,000,000 clients, and compare it to a company with 2
employees and 150 customers, you should notice two things. The bigger
company has different problems to solve with regards to infrastructure,
scalability, and keeping their code base clean with a potentially large
development team. The second thing you should notice is that both
companies also have similar problems to solve, such as security, keeping
the code base clean, deployments, writing clean code, and using proper
software engineering principles to design good code. Even if you build a
website for your cousin’s brake skimming business, security, proper coding
principles, and architectural principles are very important.

A company that serves 100 customers a month should not have
its software written in an ad hoc, shoot-from-the-hip fashion. If your
complete user base, whether it is 100 people or 1,000,000 people, depends
on a software product, then it means buggy code will affect 100% of your
client base. No company can afford to have their client base affected to this
extent.

By no means does this book suggest to over-engineer your software
solutions. If you are writing software that reads the temperature in your
garden into a database every minute of every day, emails you a graph
every month, and your brother can log in online to check the temperature
in your garden, then you don’t need a supercool Kubernetes cluster on
AWS. You do, however, need a clean code design that is easily modifiable,
secure code, and version control. You may think no one will hack into your
system, and you will be dead wrong. Not all hacking is for financial gain.
Some hacking attempts are for bragging rights, which is more than enough
incentive to deface your website. If a simple input field is left unprotected,
like a telephone number input field, your whole database can be trashed,
stolen, or corrupted.

xxii

INTRODUCTION

Why Did | Write This Book?

A while ago a friend started to learn how to program. He struggled

initially because some of the concepts that were covered were intended
for someone with a coding background. Reviewing the literature he was
using, I noticed that they also basically all excluded a comprehensive
approach to creating software. I saw this as two problems. Firstly, some

of the beginner material out there caters to people with some knowledge
about programming. This is not the end of the world. You are all intelligent
enough to put the pieces together and learn from material that is intended
for someone with more knowledge. But it was this aspect that made
learning more difficult for my friend. Secondly, there was also the absence
of the processes to build comprehensively good systems. So I decided to
create this book.

My aim for this book is to show a complete beginner the cornerstones
of creating easily readable, maintainable, editable, and releasable software
that can be adapted and changed as needed. I wanted to touch on the
principles and knowledge needed to create great software products—more
aspects of software development than just writing code. As mentioned,
software engineering is a vast discipline that requires many technical skills
and knowledge to create great software products.

Good software methodologies, tools, and approaches go back a
very long time. Having said that, today’s software development world is
different from what I was generally exposed to when I started out in the
early 2000s. Back then, we manually FTP’d our files to the server. Before
we FTP’d anything, we would make a copy of that script on the server. It
was not uncommon to see files with names such as index_1.php, index_
backup.php, and index_final backup.php. File management is now
handled by version control software. Version control systems are not new,
but I believe they are now incredibly widespread and more commonplace
than ever before. I also believe they are imperative to a programming
project.

xxiii

INTRODUCTION

How This Book Is Organized

Since the intent of this book is to teach you most of the basic aspects of
creating software products, it has been designed so that the chapters build
on each other.

The first three chapters look at setting up your system. Chapter 1
looks at software editors, Chapter 2 looks at setting up your software
environment using containerization, and Chapter 3 looks at setting up
your source control system where you can save your project remotely.
These first three chapters form the basis on which you create software and
what your software runs on.

Chapter 4 teaches you how to write code using Python. The work
in Chapters 1, 2 and 3 contribute to this chapter. Chapter 5 builds on
Chapter 4, showing you how to write better code. Chapter 6 shows how to
design databases.

Taking Chapters 4, 5 and 6 in consideration, you can move on to
Chapter 7, in which you build a small project using the skills you learned in
the preceding chapters.

Chapter 8 teaches you how to test for code quality, and Chapter 9 looks
at design concepts.

Chapter 10 looks at security issues, and we round it all off with
Chapter 11, where you look at hosting your software, as well as continuous
integration and deployment.

XXiv

CHAPTER 1

Editors

Creating software is all about solving problems. And your software
development editor is a great place to increase productivity and lessen the
cognitive load you will experience while solving these problems. Within
your editor lies the ability to automate some of your tasks. It will allow you
to defer some tasks that would have strained your memory or would have
consumed too much time, to your editor. A decent editor will allow you

to optimize the layout of your screen so that your database browser, shell,
and code editor are easily and readily available within seconds. It will have
a large collection of shortcut keys to simplify certain actions. It will also
allow you to change the look of your editor, to soften the colors, and to
choose a font that is easier on the eyes to lessen eye strain.

In this chapter, we will look at the differences, and benefits, of the
different styles of editors available for software development. Selecting an
editor may sound like a very trivial issue, but in the end it can lead to bad
decisions that can affect your productivity. When we program, we basically
create a text file containing different commands. This file will not have a
text file extension (.txt for example), but rather an extension indicating
what language it was written in, for instance . php or .py. Butitis nothing
but a text file. These files containing the commands are interpreted
(or compiled) and executed by your chosen language’s interpreter (or
compiler). Because of this, we can, in general, create our programming
language’s code files in almost any editor we choose, as long as we can
give it the right file extension. Because we can choose almost any editor,
there are many editors to choose from. This makes the decision more

© Nico Loubser 2021 1
N. Loubser, Software Engineering for Absolute Beginners,
https://doi.org/10.1007/978-1-4842-6622-9_1

https://doi.org/10.1007/978-1-4842-6622-9_1#DOI

CHAPTER 1 EDITORS

complex. This chapter will highlight some of the editors available and their
drawbacks and benefits.

Before we delve into our discussion about editors, just some
background about why we selected the editors we did in the section below.
The language we will use is called Python. It is a very popular and powerful
language, plus it’s easy to learn. And like most languages, you can use a
myriad of editors to achieve your goal of creating software.

The Different Families of Programming
Editors

There are three broad sets of editors to use to write your code, and

each set is useful in its own way. Using and supporting a specific editor is
normally a matter of experience. It may literally take you weeks or months
to realize there is something about your editor that you just do not like.

A certain editor may give you a slick modern look, but may be slow when
it opens files. Or you may be forced to choose one with specific built-in
functionality, like support for FTP. Editors often have quirks that will slow
you down or start to irritate you as time goes by, and in many cases, you
will only learn about these quirks when you test the editors yourself. You
should also consider the non-programming aspects of an editor, things
like background color, font types, font sizes, and font colors. Staring into
a screen for hours on end is very hard on your eyes, and being able to
customize your setup to lessen eye strain is important.

Shell-Based Editors

The first set of editors consists of shell-based editors like Vi, Vim, and
Nano. Shell-based editors run in a Windows, Linux, or Macintosh
command shell. You will get some exposure to command shells in
this book, but not with shell-based editors. Shell-based editors have a

CHAPTER 1 EDITORS

high learning curve, are purely text-based with no fancy graphical user
interface, and are indispensable in certain circumstances. For instance,
they're great for fixing code or putting in a temporary code fix on a remote
system that has no graphical user interface while someone works on a
permanent fix. In a lot of instances, if your career is going the Linux route,
you will encounter Vi or Vim. You can also get Vim for Windows but I
doubt you will ever need to use it. Vim is quite powerful, but can be made
even more powerful if you install the plugin SPF13 for Vim. I believe that
these editors have their place in software engineering, but they should not
be considered your primary editor.

Text Editors

The second group is text editors like Notepad, Gedit, Atom, Sublime,

and Visual Studio Code (also known as VS Code). Text editors are a cost-
effective way of getting a GUI-based editor to write your code in (they vary
from low-powered to very high-powered). In the case of an editor like the
Windows-based Notepad, you get absolutely no features and you cannot
add any features. Yet you can create files with the correct extensions which
can be interpreted or executed by a programming language. I absolutely
do not recommend Notepad, but I include it in the list to prove my point
that you can make bad decisions when choosing editors.

Linux’s Gedit is good for a quick test script, and it gives some basic
features which can aid in development. Just like Notepad, I don’t
recommend it, unless you need to churn out a 30-line script that does
something small.

Under the same umbrella as these text editors, you will also find
editors that can be very powerful. Two of these editors are worthy of a
mention: Atom and Visual Studio Code. Both come with a myriad of
plugins and built-in features, and are customizable to a degree. It may be
difficult to choose between the two, and since both are free, I feel there is
no harm in you trying out both.

CHAPTER 1 EDITORS

Atom comes across as very modern and approachable, but Visual
Studio Code is elegant and in some cases boasts faster startup times than
Atom. According to the website www. software.com, VS Code leads the
race in the most popular free editor for software developers. But both can
deliver the power you need for a perfectly free, feature-rich development
experience. In this chapter, we will look at VS Code, but I will encourage
you to experiment and play around with a lot of editors. This experience
will help you notice certain drawbacks or benefits between editors.
Personally, I like text editors, but I am not fond of searching for plugins.
There are also potential speed issues compared to IDEs, such as when
opening large projects or indexing your files to improve searching.

IDEs

A third option is an IDE (integrated development environment) like
Pycharm, Eclipse, and Wing (to name a few). They come packed with a
debugger, interpreter or compiler, web server, shell terminal, database
editor, and fully fledged code editor. An IDE can also syntactically evaluate
your code based on the version of the programming language you are
using. Some are also integrated with different version control systems, and
even keep a local history, just in case you delete something by accident.
Some IDEs come at a price, but normally they are well worth it.

By default, your IDE will index your projects, making them instantly
searchable. You can follow code from implementation to integration and
back again. There are also many shortcuts that speed up certain actions.
Granted, some of these features can be added to a text editor via plugins,
but speed-wise I have not yet seen editors perform at the same level as IDEs
do. On the topic of plugins, IDEs normally also come with a plugin system.

I have used many IDEs. At the time of writing, I am using Pycharm, which
is really hitting the spot with me. Jetbrains, the company that produces
Pycharm, offers a free community edition, which has less functionality than
the professional edition (which has a fee) but is still packed full of features.

http://www.software.com

CHAPTER 1 EDITORS

The Benefits of an IDE or an Editor
like VS Code

Having your work environment set up in the best possible way has quite

a few benefits. You will definitely increase your productivity if you get to
understand aspects like code navigation and debugging. A few IDEs allow
you to query your database and run your shell commands in different
panes next to where you are coding. This may not seem like a big deal

but it does increase your productivity. Source code navigation and code
completion will absolutely increase your productivity, while the ability to
step through your code line by line during execution time, and injecting
data into it at runtime, are incredibly powerful tools.

Let’s go back to code completion. Code completion is such a simple
concept. But using code completion frees up your mind so that you do not
have to worry about remembering all of the different keywords you find in
programming languages, for instance, or even how to implement different
program-specific aspects, since the IDE can remind you how to do them. It
is great to know these aspects by heart, but remember that writing software
can be very taxing on your cognitive system, and breaking your train of
thought while solving a complex problem can be problematic, especially if
you had to do so just because you could not remember a specific keyword.
Having code completion alleviates that burden.

This is the premise on which this whole chapter hinges. Choose an
editor, whether it is a text editor with the correct plugins or an IDE that
takes the strain off of you having to remember simple things that the editor
can just remind you about, and do automatically (or a 100 times faster) the
things you did manually, and you can get on with what creating software is
all about: solving problem:s.

CHAPTER 1 EDITORS

Installing Visual Studio Code

I suggest that you install Visual Studio Code because it is a great editor with
great features. After installing it, you will take a quick look at some of the
features of VS Code. At time of writing, VS Code can be installed from the
following location: https://code.visualstudio.com/download.

The default layout of VS Code has two sections. The left-hand pane
contains the structure of your folders as well as files. The pane on the right-
hand side has the code editor in it. The left-hand pane also contains your
workspaces, as explained below.

To create a file, just click the File menu item and select New File. When
you save this file, remember to save it with a . py extension in order for VS
Code to recognize it as a Python file.

Workspaces

A workspace shows a project’s contents. The files and folders that make up
the project are visible in the workspace in the left-hand pane of the editor.
It is not mandatory to have workspaces. You may just reopen the directory
with your project’s code each time. However, workspaces give you a
convenient way to organize your projects. Creating a workspace is easy.

1. From the File dropdown menu on the top menu bar,
select Open.

2. From there, open the project directory, with your

code in it.

3. Once thatis open in the left hand-pane in VS
Code, open the File menu once again, select Save
Workspace As, and give it a name.

https://code.visualstudio.com/download

CHAPTER 1 EDITORS

You will see that in the left-hand pane, you have created a workspace
with the name you gave it and (Workspace) after it. To reopen a workspace,
you have two choices:

4. From the file menu, select Open Recent.

5. From the file menu, select Open Workspace. From
there, look for your project directory, and click the
file inside that directory with this name: the-name-
you-gave-it.code-workspace.

What happens in the background is that VS Code creates a file in
the directory your project is in, and now considers that directory your
workspace. Inside this file you will find the following text. This file is
a skeleton and can be filled out to be more complete, but we are not
concerned with that. It is noteworthy, though, that the path value in this
file points towards your workspace. You can move this file to another
location as long as you update the path value. This is good to know, but not
something we are going to do now. The default values will do just fine.

{

"folders": [
{
"path": "."
}

I,
"settings": {}

Built-In Features

VS Code comes with some handy built-in features, such as syntax
highlighting. Syntax highlighting is when an editor presents different
words, which have specific meanings in a programming language, in

CHAPTER 1 EDITORS

different colors. These words can also be grouped by color; for instance,
specific keywords belonging to Python, even though not the same word,
will have the same color because they belong to the same group called
keywords. See Figure 1-1.

class Test:

def testFunction():
if True:
print("Hello world")
number = 1 + 2

Figure 1-1. Keywords

In Figure 1-1, you can see that specific keywords (in this case, class,
def, and True) are in blue. The numbers (1 and 2) are in light green, and
words indicating function names (we will get to functions later in this
book) are in yellow.

Taking the above code into consideration, when you implement the
code, you won't have the function written in front of you. You will only
use the names, in this case Test and testFunction. This means that if you
need to see how testFunction works on the inside, you need to browse
to the page where test function is written. But with a decent editor like
VS Code, this becomes a lot easier. The following may all be a bit hard to
envision at this very moment, but once you start writing code, it will all
start to make sense. See Figure 1-2. With VS Code, you can view the code
written even though you are in another script by hovering your mouse
over the word testFunction() and pressing Shift + Ctrl. A popup will
appear with the code in it. Holding Shift down and clicking the name of
the function will actually take you to where the implementation is written.
These two small portions of functionality make it a hundred times easier to
navigate a codebase and take the task of browsing out of your hands.

CHAPTER 1 EDITORS

def testFunction():
if True:
print("Hello world")

test testFunction: testFunction
test.testFunction()

Figure 1-2. Code popup

Features to Install

You may find that some of the features you want are not built in. They are
called extensions and they are installable via the Extensions Marketplace.
To install an extension, click the four squares in the left-hand shortcut
menu, as seen in Figure 1-3. This will open the Extensions Marketplace,
allowing you to search for extension that can make your life even easier. In
this example, I searched for “git” in the search text box, and underneath it,
all of the potential extensions appeared.

EXTENSIONS: MARKETPLACE

git‘

Git History 0.6.12 > 3M % 45
View git log, file history, compare branches or commits
Don Jayamanne Install

GitLens — Git supercharged 10.2.2 ®6.7M K 5
Supercharge the Git capabilities built into Visual Studi...
Eric Amodio Install

Git Blame 6.0.0 P 682K Kk 4.5
See git blame information in the status bar.
Wade Anderson Install

Figure 1-3. Searching for extensions

CHAPTER 1 EDITORS

Summary

This was an easy chapter, but the subject is no laughing matter. Choosing
an editor that is right for you is important, but may take some practice. I
still remember how I thought the editor I used back in 2003 was the best
PHP editor ever and that I would not need anything else in my life. Now,
many editors and many years later, I can reflect on that simple choice and
clearly see the error of my ways. You took a quick look at VS Code, but it
should be enough to get you going and a good first step as you learn how to
create software.

10

