Surface Science and Adhesion in Cosmetics
Adhesion and Adhesives: Fundamental and Applied Aspects

The topics to be covered include, but not limited to, basic and theoretical aspects of adhesion; modeling of adhesion phenomena; mechanisms of adhesion; surface and interfacial analysis and characterization; unraveling of events at interfaces; characterization of interphases; adhesion of thin films and coatings; adhesion aspects in reinforced composites; formation, characterization and durability of adhesive joints; surface preparation methods; polymer surface modification; biological adhesion; particle adhesion; adhesion of metallized plastics; adhesion of diamond-like films; adhesion promoters; contact angle, wettability and adhesion; superhydrophobicity and superhydrophilicity. With regards to adhesives, the Series will include, but not limited to, green adhesives; novel and high-performance adhesives; and medical adhesive applications.

Series Editor: Dr. K.L. Mittal
P.O. Box 1280, Hopewell Junction, NY 12533, USA
Email: RAAreviews@gmail.com

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Surface Science and Adhesion in Cosmetics

Edited by
K.L. Mittal and H.S. Bui
Contents

Preface xxxi

Part 1: General Topics 1

1 Lip Biophysical Properties and Characterization Methods for Long-Wear Lipsticks 3
 Rebecca Barresi and I-Chien Liao
 1.1 Introduction 4
 1.2 Overview of Lip Anatomy & Lip Surface Properties 8
 1.2.1 Lip Anatomy and Biophysical Properties 8
 1.2.2 Surface Properties of the Lips 11
 1.3 In Vitro Evaluation Methods for Lipsticks 17
 1.3.1 Stability Testing of Lipstick Formulations 17
 1.3.2 Physical Properties of Lipstick Formulations 18
 1.3.2.1 Lipstick Hardness and Deposition 18
 1.3.2.2 Lipstick Wear Assays 19
 1.3.2.3 Lipstick Cohesion Test 21
 1.3.2.4 Tack Testing 22
 1.3.2.5 Thermal Analysis of Lipsticks 22
 1.3.3 Visual Properties of Lipstick Formulations 23
 1.3.3.1 Transfer Resistance Test 23
 1.3.3.2 Gloss Measurement 24
 1.4 Relation of In Vitro Analysis with Consumer Sensory Testing 25
 1.5 Summary 28
 Acknowledgements 29
 References 29

2 Effect of Cosmetic Oils on Lipstick Structure and Its Deposit 35
 Momoko Suzumeji Shimizu, Yuta Nomura and Hy Si Bui
 2.1 Introduction 35
 2.2 Types of Natural Waxes, Their Physical Properties and Potential Applications 38
2.3 Factors Affecting Oil-Wax Structures 41
2.3.1 Factors Affecting Oil-Wax Structures: Wax Type 42
 2.3.1.1 Non-Natural Waxes 42
 2.3.1.2 Natural Waxes 43
2.3.2 Factors Affecting Oil-Wax Structures: Oil Polarity 44
2.3.3 Factors Affecting Oil-Wax Structures: Oil Viscosity 46
2.3.4 Factors Affecting Oil-Wax Structures: Cooling Rate 46

2.4 Study on Model Oil-Wax System Containing Polyethylene Wax 47
 2.4.1 Materials 47
 2.4.2 Measurements 48
 2.4.2.1 Oil Viscosity 48
 2.4.2.2 Oil Polarity by Relative Permittivity 48
 2.4.2.3 Hardness of Lipsticks 48
 2.4.2.4 Amount and Thickness of Lipstick Deposit on Bioskin 48
 2.4.2.5 Wax Crystallization Study 49
 2.4.2.6 Morphology of Wax Structure by SEM 50

2.5 Results and Discussion 50
 2.5.1 Factors Affecting Lipstick Structure: Oil Viscosity 50
 2.5.2 Factors Affecting Lipstick Structure: Oil Polarity 56
 2.5.3 Factors Affecting Lipstick Structure: Wax Amount 60
 2.5.4 Influence of Wax-Oil Lipstick Structure on its Deposition and Sensorial Perception 65

2.6 Summary 67
Acknowledgement 68
References 68

3 UV Curing of Nail Gels by Light Emitting Diode (LED) and Fluorescent (FL) Light Sources 73
 Michael J. Dvorchak and Melanie L. Clouser
 3.1 Introduction 73
 3.2 UV Cure Chemistry 74
 3.2.1 Initiation Reaction 74
 3.2.2 Propagation Reaction 74
 3.2.3 Chain Transfer Reaction 75
 3.2.4 Termination Reaction 75
 3.2.5 Photoinitiation 75
 3.3 UV Cure Light Sources: Gallium-Doped Low-Wattage Long Wavelength Fluorescent (FL) Bulbs and Light Emitting Diodes (LEDs) 76
3.3.1 UV Light Spectrum
3.3.2 Matching the PI with the UV Light Source and Pigments Absorption/Transmission
3.4 UV Cure Oxygen Inhibition Issues
3.5 Special Considerations for the Use of UV Nail Gel Technology Due to Oxygen Inhibition
3.5.1 UV Nail Gel Cure Units: GA-FL and LED
3.5.2 UV Cure and Free Radical Oxygen Inhibition
3.5.3 Methods for Mitigating Oxygen Inhibition During UV Cure
3.5.4 Combinatorial Chemistry Technique Used to Mitigate Oxygen Inhibition for Low Energy UV-A Cure Resulting in Tack-Free Surfaces
3.6 How to Formulate a UV-A Cure Nail Gel
3.6.1 Formulating with (Meth) Acrylate Monomers
3.6.2 Formulating with the Proper Photoinitiator
3.7 Formulation of UV Nail Gels with 100% Solids UV Cure Oligomers and Monomers
3.7.1 Formulation of a UV Nail Gel Using a UV Cure Polyurethane Dispersion (UV-PUD)
3.7.2 Bio-Based UV Cured Nail Gel Materials
3.8 Human Nail Mechanical and Surface Free Energy Properties
3.9 Adhesion of UV Nail Gel to the Human Nail Plate
3.10 Removal of the UV Nail Gel From the Human Nail Plate
3.11 Alternative Uses of UV Cured Nail Gels as a Solution to Remedy Onychomycosis (Toenail Fungus)
3.12 UV Cured Nail Gel Safety
3.13 Prospects on UV Nail Gels
3.14 Summary
Acknowledgements
References

4 Rheological Properties Influence Tackiness, Application and Performance of Nail Polish/Lacquer Formulations
Leidy Nallely Jimenez, Carina D. V. Martínez Narváez, Chenxian Xu, Samantha Bacchi and Vivek Sharma
4.1 Introduction
4.2 Typical Ingredients of a Nail Polish Formulation
4.3 Rheological Response of Nail Polishes: Background
4.4 Methods for Characterizing Flow Behavior and Application to Nail Polishes
4.4.1 Shear Rheology Characterization and Tack Test 120
4.4.2 Application of Nail Paints: Brush Loading, Sagging, Nail Coating, and Dispensing 120
4.4.3 Extensional Rheology Characterization using Dripping-onto-Substrate (DoS) Rheometry 121
4.5 Materials: Ingredients of the Twelve Nail Polishes 122
4.6 Results and Discussion 123
 4.6.1 Shear Rheology of Twelve Nail Polishes 123
 4.6.2 Brush Loading and Sagging 129
 4.6.3 Brush Application 130
 4.6.4 Tack Test of Nail Lacquers 132
 4.6.5 Dripping Nail Polish after Automated Brush Loading 134
 4.6.6 Capillarity-Driven Pinching Dynamics and Extensional Rheology of Nail Polishes 135
4.7 Summary and Conclusions 141
Acknowledgements 143
References 143

5 Use of Advanced Silicone Materials in Long-Lasting Cosmetics 151
Amar B. Pawar and Benjamin Falk

5.1 Introduction 151
5.2 Adhesion to Skin 152
 5.2.1 Skin as a Substrate for Adhesion 153
 5.2.1.1 Structure of Human Skin 153
 5.2.1.2 Skin Surface Physicochemical Properties 155
 5.2.1.3 Skin Mechanical Properties 156
5.3 Formulation Strategies for Long-Lasting Cosmetics 157
 5.3.1 Silicones in Cosmetic Products 158
 5.3.2 Structure-Property Relation of Silicones 159
5.4 Advanced Silicone Materials for Long-Wear Cosmetics 160
 5.4.1 Silicone MQ Resins in Color Cosmetics 161
 5.4.1.1 MQ Resin Structure and Properties 161
 5.4.1.2 MQ Resin as a Tackifier for Long-Wear Benefits 162
 5.4.2 Silsesquioxane Resins in Long-Wear Cosmetics 168
 5.4.3 Silicone Acrylate Copolymers in Long-Wear Cosmetics 169
 5.4.3.1 Hybrid Silicone Acrylate Emulsion for Long-Wear Cosmetics 169
 5.4.3.2 Solvent-Borne Hybrid Silicone Acrylate Copolymers 171
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.4 Ionic Functionalized Silicones for Long-Wear Cosmetics</td>
<td>173</td>
</tr>
<tr>
<td>5.5 Summary and Prospective Film-Formers for Long-Wear Cosmetics</td>
<td>174</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>175</td>
</tr>
<tr>
<td>References</td>
<td>175</td>
</tr>
<tr>
<td>Part 2: Surface Science Aspects</td>
<td>183</td>
</tr>
<tr>
<td>6 Advances in the Chemical Structure of the Hair Surface,</td>
<td>185</td>
</tr>
<tr>
<td>Surface Forces and Interactions</td>
<td></td>
</tr>
<tr>
<td>Gustavo S. Luengo and Andrew J. Greaves</td>
<td></td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>6.2 Structure of Hair and the Outermost Surface</td>
<td>187</td>
</tr>
<tr>
<td>6.3 Chemical and Physical Modifications</td>
<td>187</td>
</tr>
<tr>
<td>of the Hair Surface</td>
<td></td>
</tr>
<tr>
<td>6.4 Local Physico-Chemical Understanding of the Hair Surface</td>
<td>197</td>
</tr>
<tr>
<td>6.4.1 Mapping the Hair Surface Chemistry</td>
<td>198</td>
</tr>
<tr>
<td>6.4.2 Forces at the Surface of Hair</td>
<td>199</td>
</tr>
<tr>
<td>6.4.3 Interaction with Cosmetic Actives</td>
<td>202</td>
</tr>
<tr>
<td>6.5 Macroscopic Understanding of the Chemical Nature of the Hair Surface</td>
<td>203</td>
</tr>
<tr>
<td>6.6 Impact of the Hair Chemical Nature on Sensorial and Consumer Benefits</td>
<td>207</td>
</tr>
<tr>
<td>6.7 Prospects</td>
<td>208</td>
</tr>
<tr>
<td>6.8 Summary</td>
<td>208</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>209</td>
</tr>
<tr>
<td>References</td>
<td>209</td>
</tr>
<tr>
<td>7 AFM for Hair Surface Characterisation</td>
<td>215</td>
</tr>
<tr>
<td>Steven Breakspear, Bernd Noecker and Crisan Popescu</td>
<td></td>
</tr>
<tr>
<td>7.1 Hair Structure</td>
<td>215</td>
</tr>
<tr>
<td>7.2 Elements of AFM</td>
<td>217</td>
</tr>
<tr>
<td>7.2.1 Imaging - Topography</td>
<td>218</td>
</tr>
<tr>
<td>7.2.2 Force Measurements Using the AFM</td>
<td>220</td>
</tr>
<tr>
<td>7.2.2.1 Force Curves</td>
<td>221</td>
</tr>
<tr>
<td>7.2.2.2 Friction/Lateral Force</td>
<td>221</td>
</tr>
<tr>
<td>7.2.2.3 Elastic Theory and Nanoindentation</td>
<td>223</td>
</tr>
<tr>
<td>7.2.3 Requirements for Good Use of AFM – Calibration</td>
<td>224</td>
</tr>
<tr>
<td>7.3 The Use of AFM to Characterize the Hair Surface/Cuticle</td>
<td>227</td>
</tr>
<tr>
<td>7.3.1 Hair Dimensions and Considerations</td>
<td>227</td>
</tr>
<tr>
<td>7.3.2 Hair Surface Topography</td>
<td>229</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Swelling</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Friction</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Adhesion</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Charge Density Mapping - Tapping</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Nanoindentation</td>
</tr>
<tr>
<td>7.4</td>
<td>Cosmetic Treatment (e.g. Bleaching) as Shown by AFM</td>
</tr>
<tr>
<td>7.5</td>
<td>Summary</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

8 Atomic Force Microscopy (AFM) as a Surface Characterization Tool for Hair, Skin, and Cosmetic Deposition 245

Norbert Biderman and Hy Si Bui

8.1 Introduction 245

8.2 Atomic Force Microscopy Compared to Other Microscopy Techniques 246

8.3 The Principles of Atomic Force Microscopy 247

8.4 A Brief History of Hair Surface Investigation via Atomic Force Microscopy 249

8.5 Lateral Force Microscopy (LFM) of the Hair Surface 249

8.6 Adhesion at the Nanoscale via AFM 251

8.7 Elastic Modulus Measurement via AFM 254

8.8 Hair Studies via AFM 256

8.8.1 Nanomechanical Properties of the Hair Surface 256

8.8.2 Thickness of Deposited Films on the Hair Surface 257

8.8.3 Inferring the Film Thickness of Polymeric Formulations on the Hair Surface from Nanomechanical Measurements 258

8.8.4 Nanomechanical Analysis of a Commercial Long-Lasting Formulation on the Hair Surface 261

8.8.5 Nanoscale Characterization of the Impact of Commercial Hair Care Products on the Hair Fiber Interior 264

8.9 Skin Studies via AFM 265

8.9.1 Skin Surface Roughness and Skin Elastic Modulus 265

8.9.2 Effect of Cosmetic Deposition on Skin 266

8.9.3 Makeup Formulations from Two Competing Cosmetic Manufacturers on Non-Skin Substrate 267

8.9.4 Scaling Up Skin Cosmetics Formulations from Laboratory to Large-Scale Manufacturing 270

8.9.5 Interaction of Components in Skin Cosmetic Polymer Blends 272
9 Secondary Ion Mass Spectrometry as a Surface Analysis Method for Hair, Skin, and Cosmetics

Norbert Biderman

9.1 Introduction

9.2 Secondary Ion Mass Spectrometry (SIMS)
 9.2.1 Fundamentals
 9.2.2 Depth Resolution in SIMS: Key to Unlocking Topmost Surface Analysis
 9.2.3 Static Versus Dynamic Secondary Ion Mass Spectrometry
 9.2.4 Quantification in SIMS
 9.2.5 SIMS Spectrometers
 9.2.6 Primary and Analytical Ion Beams

9.3 Studying the Skin via TOF-SIMS
 9.3.1 Imaging the Skin Barrier Properties
 9.3.2 Chemical Changes Due to Skin Aging via TOF-SIMS
 9.3.3 Penetration of Active Ingredients through the Human Skin
 9.3.4 Fatty Acids as Penetration Enhancers as Evaluated with TOF-SIMS

9.4 Studying the Hair Via TOF-SIMS
 9.4.1 Depth-Proﬁling the Hair Fiber Surface Directly via Ion Beam Sputtering
 9.4.2 Identifying Unknown Chemistries on the Hair Fiber Surface with TOF-SIMS
 9.4.3 Hair Crosslinking Materials Analysis via TOF-SIMS
 9.4.3.1 A Kinetic Study of Thin Film Crosslinking on Silicon Wafer Substrate by TOF-SIMS Depth-Proﬁling
 9.4.3.2 Detecting Long-Lasting, Shampooing-Resistant Crosslinked Thin Film on the Silicon Wafer Substrate
 9.4.3.3 Long-Lasting, Shampooing-Resistant Crosslinked Material on the Hair Substrate

9.5 Future Prospects

References
Part 3: Wetting and Adhesion Aspects

10 Surface Tensiometry Approach to Characterize Cosmetic Products in the Beauty Sector

Davide Rossi and Nicola Realdon

10.1 Introduction
10.2 Peels
10.2.1 Characterization of the Formulations for Skin Peels
10.2.1.1 Surface Tension Approach to the Study of Chemical Peels for Face Skin Treatments

10.3 Face Masks
10.3.1 Constituents of Face Masks
10.3.1.1 Honey
10.3.1.2 Plant Oils
10.3.1.3 Egg White
10.3.1.4 Lavender Oil
10.3.1.5 Bentonite Clay
10.3.2 Surface Tensiometry Approach to the Study of Face Skin Masks

10.4 Serums
10.4.1 Surface Tensiometry Approach to the Study of Serums for Skin Applications

10.5 Eye Contour Creams
10.5.1 Surface Tensiometry Approach to the Study of Eye Contour Creams

10.6 Mascara
10.6.1 Characterization of Mascara
10.6.1.1 Surface Tensiometry Approach to the Study of Mascara

10.7 Eyeshadows
10.7.1 Surface Tensiometry Approach to the Study of Eyeshadows

10.8 Lipsticks
10.8.1 Surface Tensiometry Approach to the Study of Lipsticks

10.9 Foundation
10.9.1 Surface Tensiometry Approach to the Study of Face Skin Foundation
Contents

10.10 Anti-Aging Formulations 340

10.10.1 Surface Tension Approach to the Study of Anti-Aging Formulations 346

10.11 Summary 348

Acknowledgement 349

References 349

11 Spreading of Hairsprays on Hair 353

Yashavanth Kamath and Xuemin Chen

11.1 Introduction 353

11.2 Background on Interaction of Liquid Droplets with Fibers 354

11.2.1 Droplet Shapes in Relation to Fiber Diameter 356

11.2.2 Absorption of Liquids into Hair Assemblies 357

11.3 Materials and Experimental Methods 359

11.3.1 Materials 359

11.3.2 Methods 360

11.3.2.1 Imaging System 360

11.3.2.2 The Spreading Setup 361

11.4 Results and Discussion 361

11.4.1 Instability of Liquid Sprays on Hair 361

11.4.2 Synthetic and Hair Fiber Comparison 362

11.4.3 Holding Spray on One Hair Fiber 362

11.4.4 Holding Spray on Parallel Hair Fibers 363

11.4.5 Holding Spray on Crossing Hair Fibers 365

11.4.6 Spray on Three Crossing Hairs with a Load of 10 g 366

11.4.7 Holding Spray on One Bleached Hair Fiber 366

11.4.8 Holding Spray on Two Bleached Hair Fibers Parallel to Each Other 367

11.4.9 Holding Spray on Two Crossing Bleached Hair Fibers 370

11.5 General Observations on the Behavior of Holding Spray on Hair 370

11.6 Shine Spray on One Bleached Hair Fiber 373

11.7 Summary 375

Acknowledgements 376

References 376

12 Quantification of the Color Transfer from Long-Wear Face Foundation Products: The Relevance of Wettability 379

Joseph V. Badami and Hy Si Bui

12.1 Introduction 380
Contents

12.2 Experiments
 12.2.1 Contact Angle Measurement
 12.2.2 Foundation Transfer – In Vitro
 12.2.2.1 Foundation Transfer – In Vivo
 12.2.2.3 Image Analysis of Foundation Transfer

12.3 Results and Discussion
 12.3.1 Contact Angle of Water on Polyester Substrate and Deposited Foundations
 12.3.2 Contact Angle of Water on Bio Skin Substrate and Deposited Foundations
 12.3.3 In Vitro Foundation Transfer from Polyester Application Substrate
 12.3.4 In Vitro Foundation Transfer from Bio Skin Application Substrate
 12.3.5 In Vitro Foundation Transfer – Impact of Foundation Shade
 12.3.6 In Vivo Foundation Transfer

12.4 Summary and Perspectives

Acknowledgments

References

13 Interaction of Polyelectrolytes and Surfactants on Hair Surfaces. Deposits and their Characterization

Gustavo S. Luengo, Eduardo Guzman, Laura Fernández-Peña, Fabien Leonforte, Francisco Ortega and Ramon G. Rubio

13.1 Introduction

13.2 Hair Structure and Its External Surface
 13.2.1 Hair Structure
 13.2.2 Chemical Composition of Hair
 13.2.3 Physico-Chemical Heterogeneity of the Cuticle
 13.2.4 Hair Surface and its Interaction with Polyelectrolytes

13.3 Experimental Approaches for the Evaluation of the Deposition of Polyelectrolyte-Surfactant Systems onto Model Surfaces
 13.3.1 Model Surfaces
 13.3.2 Approaches for Quantitative Study of the Adsorption Process
 13.3.3 A Typical Formulation of a Hair Conditioner
 13.3.4 Bulk Behavior of Polyelectrolyte - Surfactant Mixtures
13.3.5 Polyelectrolyte–Surfactant Mixtures Adsorbed onto Solid Surfaces 423
13.3.6 Deposition Enhanced by Dilution 428
13.4 Theoretical Modelling of Polyelectrolyte-Surfactant Mixtures 430
 13.4.1 Bulk Calculations 434
 13.4.2 Surface Calculations 437
13.5 Prospects 441
13.6 Summary 441

Acknowledgements 443
References 443

14 Adhesion Aspect and Film-Forming Properties of Hydrocarbon Polymers-Based Lipsticks 451
Julien Portal, Xavier Schultze, Simon Taupin, Mireille Arnaud-Roux, Jerome Bonnard, Gregoire Naudin, Marc Hely, Hy Bui and Norbert Biderman
14.1 Introduction 452
14.2 Synthesis and Characterization of the Model Oil Compatible Polymers Dispersions 456
 14.2.1 Chemical Composition of Non-Aqueous Polymer Dispersions 456
 14.2.2 Physical Properties of Non-Aqueous Polymer Dispersions 456
 14.2.2.1 Molecular Weight and Size of Polymer Aggregates 456
 14.2.2.2 Glass/Vitreous Physical Properties of Polymer Dispersion - Differential Scanning Calorimetry (DSC) 459
 14.2.2.3 Dynamic Mechanical Analysis (DMA) 460
 14.2.2.4 Mechanical Properties of Films Cast from Polymer Dispersion 463
 14.2.2.5 Morphology of NAD Samples by Transmission Electron Microscopy (TEM) 464
 14.2.2.6 Surface Nanostructure of Films Cast from Polymer by Atomic Force Microscopy (AFM) 467
 14.2.3 Thin Film Property and Adhesion Aspects 469
 14.2.3.1 Surface Free Energy of NAD Films 469
 14.2.3.2 Sebum and Water Resistance 473
14.3 NADs as Film-Formers for Long-Wear, Non-Transfer Lipstick 476
14.3.1 In-Vitro Evaluations 477
14.3.2 In-Vivo Evaluation 478
14.4 Summary and Prospects 480
Acknowledgements 481
Annex 482
References 483

15 Factors Enhancing Adhesion of Color Cosmetic Products to Skin: The Role of Pigments and Fillers 487
Hubert Lam
15.1 Introduction 488
15.2 Overview of Pigments: Basic Physicochemical Considerations in Long-Wear Color Cosmetics 488
15.2.1 Pigments and Fillers in Long-Wear Color Cosmetics 489
15.2.1.1 Inorganic Pigments 489
15.2.1.2 Organic Pigments in Long-Wear Color Cosmetics 492
15.2.1.3 Factors Affecting Adhesion of Long-Wear Cosmetics 493
15.2.1.4 Importance of Pigment Wetting and Surface Treatment in a Color Dispersion in Long-Wear Cosmetics 496
15.2.1.5 Factors Affecting the Long-Lasting Color in Long-Wear Color Cosmetics: Dispersion of Treated Pigment 498
15.2.1.6 Factors Affecting Adhesion of Film-Formers: Functional Fillers 503
15.3 Factors Affecting Adhesion of Long-Wear Color Cosmetics 510
15.3.1 Long-Wear Liquid Foundation 510
15.3.2 Long-Wear Powders 516
15.3.2.1 Oil Absorbent and Water Absorbent Systems 516
15.3.2.2 Oil Repellent and Water Repellent Systems 518
15.3.3 Long-Wear Eye Shadow 519
15.3.4 Long-Wear and Transfer-Resistant Lipsticks 520
15.3.4.1 Pigments Used in Long-Wear Lip Products 521
15.3.4.2 Typical Fillers Used in Long-Wear Lipstick 523
15.3.5 Long-Wear Nail Polish 526
 15.3.5.1 Conventional and UV Nail Polish 526
 15.3.5.2 Water-Based Nail Polish 529
15.3.6 Long-Wear Mascara and Eyeliner 531
 15.3.6.1 Pigments and Fillers Used in Long-Wear Mascara 531
 15.3.6.2 Long-Wear Mascara 533
15.4 Summary and Prospects 534
Acknowledgments 535
References 535

16 Factors Affecting Cosmetics Adhesion to Facial Skin 543
Zhi Li and Hy Si Bui
16.1 Introduction 543
16.2 Factors Affecting Adhesion to Skin: Skin Substrate Properties 544
 16.2.1 Skin Types 545
 16.2.2 Surface Free Energy of Skin 545
 16.2.3 Skin Young’s Modulus 546
 16.2.4 Skin Surface Roughness 547
 16.2.5 Wetting and Spreading of Sebum and Sweat on Human Skin 548
16.3 Factors Affecting Adhesion to Skin: Formulation Components 549
 16.3.1 Volatile Fluids 553
 16.3.2 Treated Pigments 557
 16.3.2.1 Silicone Surface Treatment 558
 16.3.2.2 Amino Acid Surface Treatment 558
 16.3.2.3 Silane Surface Treatment 560
 16.3.2.4 Organo-titanate Surface Treatment 561
 16.3.2.5 Hybrid Surface Treatment Chemistries 561
 16.3.2.6 Surface Treatment Chemistry Affects Formulation Performance 562
 16.3.3 Film-Formers 563
 16.3.3.1 MQ Silicone Resins 565
 16.3.3.2 T-Propyl Silicone Resin 567
 16.3.3.3 Silicone Acrylates 568
 16.3.3.4 MQ/Dimethicone Hybrids 569
16.3.4 Emulsifiers
 16.3.4.1 Silicone Emulsifiers 570
 16.3.4.2 Non-Silicone Emulsifiers 572
16.3.5 Fillers 572

16.4 Factors Affecting Adhesion to Skin: Combination of Film-Formers and Emulsifiers 573
 16.4.1 Combination of MQ Resin and Silicone Emulsifier 576
 16.4.2 Combination of Silicone Acrylate and Silicone Emulsifier 578

16.5 Summary and Prospects 580
Acknowledgements 581
References 581

17 Adhesion Aspect in Semi-Permanent Mascara 585
Christopher Pang and Hy Si Bui
17.1 Introduction 585
 17.1.1 History of Mascara - Invention of the Mascara 585
 17.1.2 Birth of the First Mascara 586
17.2 Structure of Eyelash and Eye Lid: An Overview 587
17.3 Types of Mascaras 589
17.4 Components in Mascara Formulations 593
17.5 Long-Wear Mascaras 596
 17.5.1 One-Day Wear Mascara 596
 17.5.2 Semi-Permanent Mascara (3 - 5-Day Wear) 596
 17.5.3 Micropigmentation/Lash Tinting (30-Day Wear or Longer) 598
17.6 Evaluation Methods for Long-Wear Mascara 598
 17.6.1 In Vitro Evaluation 598
 17.6.2 In Vivo Evaluation by Expert Panels or Consumers 603
17.7 Factors Affecting Adhesion of Mascara on an Eyelash 604
 17.7.1 Factors Affecting Adhesion of Mascara to Eyelash: Mascara Composition 605
 17.7.1.1 Film-Formers 605
 17.7.1.2 Critical Pigment Volume Concentration (CPVC) 613
 17.7.2 Factors Affecting Adhesion of Mascara to Eyelash: Rheology of Mascara 614
 17.7.2.1 Bulk Rheology of Long-Wear Mascara Formulation 614
 17.7.2.2 Flow Property of Long-Wear Mascara Formulations 616
17.7.3 Factors Affecting Adhesion of Mascara to Eyelash:
Surface Property of Mascara Deposit 619
17.7.3.1 Spreading and Wetting of Long-Wear Mascara on Eyelash 619
17.7.3.2 Deposition of Mascara on Eyelash 619
17.7.3.3 Internal Stress 620
17.7.3.4 Sebum/Sweat/Water Resistance 621
17.7.4 Factors Affecting Adhesion of Mascara to Eyelash:
Mechanical Property of Mascara Deposit 622
17.8 Removability of Mascara 624
17.9 Summary and Prospects 628
Acknowledgments 629
References 629

18 Lipstick Adhesion Measurement 635

Caroline Richard

18.1 Introduction 635
18.2 Definition of Adhesion 641
18.3 Sensory Metrology: Subjective Methods 643
 18.3.1 Self-Assessment Tests (Consumer Tests) 643
 18.3.2 Tests with an Experimenter 644
 18.3.3 Tests with an Instrumental Method 647
18.4 Mechanical Tests: Objective Methods 649
18.5 Correlation Between Sensory and Instrumental Tests 656
18.6 Summary 659
Acknowledgments 659
References 659

Index 663
Cosmetics have been around since the dawn of civilization. The origin and use of cosmetics can be traced to many millennia ago. In the earlier days, cosmetics were prepared by primitive processes using natural products. For example, in India mascara was obtained from smoke generated by lighting up the wick dipped in mustard oil. This is an excellent example of nanotechnology as the particle size in such mascara was in the nanometer range, but in those days nanotechnology was an unknown discipline. More modern cosmetics are based on polymers and other ingredients to endow performance attributes to cosmetics.

A glance at the current literature will evince that there is considerable interest and activity in the relevance of surface chemistry and adhesion aspects in the domain of cosmetics. It should be emphasized that the advent of sophisticated surface analysis techniques has been a boon to understanding the complex structures and topography of biological surfaces. Researchers with variegated backgrounds and different disciplines are engaged in unraveling the interactions between cosmetics and different biological tissues (face skin, lips, hair). Here a few eclectic examples will suffice to underscore the importance of interfacial phenomena in various cosmetic products. An adequate adhesion of lipstick is all too familiar and its retention in the presence of foods and drinks is quite patent. Apropos, if the lipstick gets transferred to a wrong place or to a wrong person it can have unpleasant and serious sociological implications. The proper adhesion of nail polish to nails is another significant example; thus various approaches are adopted to enhance adhesion of nail polish. The surface chemistry of skin can be cited as being extremely important in a spectrum of applications. It should be underscored that biological tissues are very complex in nature and differ based on gender, ethnicity and environment.

It should be noted that although there is much research and development activity in the arena of surface chemistry and adhesion aspects in cosmetics but the information is scattered in many diverse publication media and,
to our knowledge, no book exists which discusses surface chemistry and adhesion in cosmetics in a unified manner. This provided the vindication for bringing out this book and thus to fill the lacuna in the literature.

This book containing 18 chapters written by active and eminent researchers hailing from many parts of the globe representing academia and industry is divided into three parts: Part 1: General Topics; Part 2: Surface Science Aspects; and Part 3: Wetting and Adhesion Aspects. The topics covered include: Lip biophysical properties and characterization; effect of cosmetic oils on lipstick structure and its deposit; UV curing of nail gels from different light sources; rheological properties of nail polish/lacquer formulations; advanced silicone materials in long-lasting cosmetics; chemical structure of the hair surface, surface forces and interactions; AFM for hair surface characterization; AFM as a structure characterization tool for hair, skin and cosmetic deposition; SIMS as a surface analytical method for hair, skin and cosmetics; surface tensiometry approach to characterize cosmetic products; spreading of hairsprays on hair; color transfer from long-wear face foundation products; interactions of polyelectrolytes and surfactants on hair surfaces; adhesion aspects and film-forming properties of hydrocarbon polymers based lipsticks; adhesion of color cosmetic products to skin; factors affecting cosmetics adhesion to facial skin; adhesion aspects in semi-permanent mascara; and lipstick adhesion measurement.

This unique book consolidates in an easily accessible source the current state-of-knowledge regarding surface chemistry and adhesion aspects in the fascinating and sociologically important field of cosmetics. This book should be of immense interest to cosmetologists, dermatologists, beauticians, R&D personnel in industry engaged in developing cosmetics, and researchers in academia. Also surface chemists, adhesionists, materials scientists, polymer chemists, biologists, pharmaceutical scientists and formulation chemists will find this book of much value. We hope this book containing bountiful information will serve as a fountainhead for new ideas to utilize surface chemistry and adhesion aspects in ameliorating the existing or developing new and improved cosmetics. The book is profusely illustrated and copiously referenced.

These days there is tremendous interest in harnessing nanotechnology (e.g. use of nanoparticles) and moving towards “green” cosmetics. As new and improved ingredients for cosmetic formulations become available, one can expect more environmentally benign and more appealing cosmetics in the future.

It gives us great pleasure to thank all those who were instrumental in making this book possible. Obviously, first and foremost our sincere and
heart-felt thanks go to the authors for their keen interest, sustained enthusiasm, unwavering cooperation and sharing their valuable research experience in the form of written accounts without which this book could not be materialized. We will be remiss if we fail to extend our thanks to Martin Scrivener (Publisher) for his steadfast interest in and whole-hearted support for this book project.

Kash Mittal
PO Box 1280 Hopewell Jct., NY 12533, USA
raareviews@gmail.com

Hy Si Bui
L’Oréal Research and Innovation
Clark, NJ, USA
Part 1

GENERAL TOPICS
Lip Biophysical Properties and Characterization Methods for Long-Wear Lipsticks

Rebecca Barresi and I-Chien Liao*

L’Oreal Research and Innovation
Clark, NJ, USA

Abstract
The lips are two pliable and mobile muscular folds that surround the oral cavity and assist in a variety of functions which enable both human survival and communication. In addition to their functional purpose, the lips are frequently cosmetically enhanced, in terms of color and gloss, through the application of lipsticks. Understanding both the biophysical and surface properties of lips is crucial for the successful formulation and development of lipsticks, particularly those with long-wear or transfer-resistant claims. Various in vitro methods provide a clear insight as to the stability, physical properties, and visual characteristics of a lipstick formulation, but a correlation between such results and consumer use experience is still lacking.

This book chapter provides an overview of the lip anatomy and lip surface properties, which can be used to provide a general knowledge for lipstick formulation. While much is known in regards to the structure and functionality of the lip tissue, obtaining further knowledge can assist in the development of superior performing lipstick formulations. Classic in vitro test methods for long-wear lipsticks, in addition to such test results correlations with consumer sensory testing, are also discussed. It is important to note that although there is an abundance of in vitro methods available in order to characterize long-wear and transfer-resistant lipsticks, there is still a definite need to develop new methods that better correlate with consumer experience. Existing methods have the potential to be further improved with new knowledge of lip properties and use of better test substrates to illustrate the benefits of new product innovations.

*Corresponding author: ichien.Liao@rd.loreal.com

Keywords: Lip anatomy, lip biophysical properties, lip surface properties, long-wear lipstick, in vitro evaluation, consumer sensory testing

1.1 Introduction

Lipsticks have been an integral part of cosmetics since the dawn of civilization. The first man-made lipstick, which consisted of black kohl, was made famous during the ancient Egyptian period as part of Cleopatra’s makeup routine. Lipsticks went through a period of low popularity during the European Middle Ages, but returned to glory during the reign of Queen Elizabeth I. During the Second World War, the use of lipsticks had not only made women feel more feminine, but rather red lipstick was seen as a symbol of patriotism and defiance of difficult times during the war. The basis of modern lipstick was invented by chemist Abu al-Qasim al-Zahrawi during the Islamic Golden Age and became a product of commercialization in late 19th century, thanks to industrial advancements. Given the long history of lipstick, consumers have developed clear expectations in regards to performance, appearance, and use experience [1]. The obvious immediate requirement is that the lipsticks should contain no toxic components and irritants. Exposure to potential irritants from lipstick is mainly by swallowing, such as after a consumer licks their lips. Currently, color additives must have FDA approval for its intended use, as many can contain traces of lead as an impurity. Following an investigation effort in 2007, the FDA determined that up to 10 parts per million (ppm) of lead in lipsticks would not pose a health risk.

The long-wear lipstick market can be classified into four key categories, each of which has its own benefits and appeals to consumers: long-wear, gloss, lasting lip gloss, and lip care. Long-wear lipstick, which was also advertised as transfer-resistant, was introduced in the cosmetics market by Shiseido in 1986 as a solution to problems associated with wear and movement experienced by a majority of lipstick users [2]. Functionally, lipsticks are expected to bring instant gratification in regards to the user’s appearance, regardless of style and color. To accomplish this, an ideal lipstick is expected to be non-drying, provide sun protection, and have great wear, color, and shine. Wear of lipsticks shall be mentioned further throughout the chapter and can hereby be formally defined as the user’s experience as a whole, consumer perception of performance and comfort, and formulation lastingness. Lipsticks should also be easy to apply on the lips and leave a thin film deposit. Early iterations of lipstick technology did not withstand the challenges associated with consumer use and wear, which,