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Preface

Global population is expected to reach 9.8 billion and food demand is expected to
be 60% higher than it is today by 2050, which requires a double current yield
increase rate to meet the demand. During the past 20 years, molecular profiling and
sequencing technologies enabled major advances toward the large-scale
characterization of crop genomes. However, the acquisition of crop phenotypic
information has lagged behind to allow a better understanding of
genotype-to-phenotype relationships and becomes one of the bottlenecks to crop
improvement, genetics, and genomic selection (GS). Thanks to the advances in
emerging technologies in sensors, machine vision, robotics, Unmanned Aerial
Systems (UASs), crop traits (phenotypic data) are able to be acquired in a
large-scale and high-throughput manner. Big data processing and analytic
technologies (e.g., machine learning and deep learning) and high-performance
computation systems are transforming the conventional crop breeding to the
next-generation AI-based crop breeding.

This book presents state-of-the-art information on the important innovations of
high-throughput crop phenotyping technology in quantifying crop traits of shoots
and roots through various applications in field and controlled environments. The
applications cover a large range of crops (including soybean, wheat, maize, grains,
and potato), various measurements of crop phenotypes in different levels (crop
organ, plot, and field), and for different purposes. Different novel technologies and
the implementation of these technologies in high-throughput crop phenotyping are
reviewed and discussed. The technologies include emerging sensors to measure
different crop traits, automated data acquisition platforms for fast and large-scale
data collection (e.g., autonomous ground and aerial vehicles, robotic systems), big
data processing and analytics, and their integration. Each chapter of the book
focuses on different aspects of the high-throughput phenotyping technology and the
applications for specific crops. The book starts with a chapter (Chap. 1) that briefly
explains the concept, content, and roles of the high-throughput crop phenotyping
technology in crop breeding towards yield improvement using the breeder’s
equation. Chaps. 2 and 3 provide the applications of innovative field-based crop
phenotyping systems using ground-based robot systems and a cable-suspended
robot system. As one of the key components of image-based phenotyping systems,
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vi Preface

Chap. 4 discusses novel methods for developing three-dimensional (3D)
architecture of crop plants based on images or videos collected with field crop
phenotyping systems. The following chapters (Chaps. 5–8) provide applications in
crop breeding of wheat, rice, soybean, and potato, followed by the applications in a
controlled environment (Chap. 9) and root phenotyping (Chap. 10). The final
chapter (Chap. 11) discusses the challenges in adopting high-throughput crop
phenotyping technology into crop breeding pipelines by considering of cost.

This book provides insights into high-throughput crop phenotyping technology
from the different perspectives of leading researchers in multiple disciplines,
including but not limited to Crop Breeding, Genetics, Engineering, Computer
Science, and Data Science. The authors have extensive knowledge and practical
experiences in their respective fields and are actively involved in the international
community of crop phenotyping. We wish to acknowledge their expert
contributions and great efforts in the preparation for the book chapters. Finally, we
hope that this book will assist all readers who are working in or associated with the
fields of high-throughput crop phenotyping.

Columbia, MO, USA Jianfeng Zhou
Henry T. Nguyen
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Chapter 1
Solve the Breeder’s Equation Using
High-Throughput Crop Phenotyping
Technology

Jianfeng Zhou and Henry T. Nguyen

Abstract This chapter provides an overview of high-throughput crop phenotyping
technology on its concept and significance under the context of crop production
improvement. The roles of different components in the crop production equation
(P = G × E × M + ε) toward crop yield, i.e., crop yield (P) is a function of crop
genotype (G), environment (E) and management (M) is discussed. It is concluded
that all components have a great impact on the agriculture yield. Studies suggest
that the contribution of crop genetic improvement to yield improvement can be
increased substantially upon the breakthroughs in high-efficient crop phenotyping
technologies. The potential solutions to improve crop yield gain are discussed and
guided by the genetic gain (breeder’s) equation. In this chapter, the concept of high-
throughput phenotyping technology is introduced and their potential contributions
toward genetic improvement are discussed. This chapter also provides some back-
ground information for the high-throughput phenotyping technologies discussed in
the following chapters.

Keywords Crop production · Interaction of genotype, environment and
management · Genetic gain equation · High-throughput phenotyping

1.1 Crop Production

The world population is estimated to increase by 2 billion in the next 30 years, from
7.7 billion currently to 9.7 billion in 2050, although the growth speed is at a slower
pace (UNDESA 2019). It is estimated that global crop production needs to double by
2050 tomeet the projected demands from rising population, diet shifts, and increasing
biofuels consumption (Alexandratos and Bruinsma 2012a; Hickey et al. 2019; Ray
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2 J. Zhou and H. T. Nguyen

et al. 2013). However, the current yearly increases of crop production for maize (Zea
mays L.) at 1.6%, rice (Oryza sativa L.) at 1.0%, wheat (Triticum aestivum L.) at
0.9%, and soybean [Glycine max (L.) Merr.] at 1.3% are insufficient to meet the
projected demands of ~ 2.4% in 2050 (Alexandratos and Bruinsma 2012b; Ray et al.
2013). How to improve the production of the major crops has become an impressing
pressure to the global research communities (Hatfield and Walthall 2015).

Crop production is very complicated and determined bymany factors, such as crop
genotypes (varieties), growing environments (e.g., weather, soil, microclimate, and
location), and agronomicmanagement strategies (e.g., seed treatment and placement,
planting, fertilizer, and pest management). All the effects of different factors to
crop production can be summarized using a crop production equation, i.e., crop
production (P) is the function of the interactions of genotype (G), environment (E),
and management (M), as shown in Eq. 1.1 (Beres et al. 2020; Hatfield and Walthall
2015).

P = G × E × M + ε (1.1)

where, P = plant Phenotypes that refer to the observable physical properties of
an organism, including yield; G = Genotype that refers to the genetic makeup of
an organism; E = Environmental factors that affect plant growth, such as climate,
soil quality, light, temperature, and water availability; and M = Management prac-
tices of plant and field, such as seed treatment, planting, pest management, nutrition
management, and irrigation; ε is the total errors of the model. The equation suggests
that crop yield can be increased with the improvement in crop genotypes through
breeding programs, adoption of crops to environment, and improvement in field and
crop management strategies (von Mogel 2013).

The natural environment is not possible tomanage, but it has a great impact on crop
production. Under climate change, environment is becoming unfavorable to plant
growth, such as changes in CO2 level, global temperature, degradation of soil quality,
and extreme weather conditions (e.g., flood and drought). For example, according to
the US National Aeronautics and Space Administration (NASA) weather simulation
models, there is a predicted 30% increase in heavy precipitation events by the year
2030, which is expected to significantly increase the risk and frequency of flooding
(Rosenzweig et al. 2002). Flooding damage to crops can be caused by extreme rainfall
events, excess irrigation, or by rainfall that occurs after an irrigation event (Heatherly
and Pringle III 1991). Environment will continue generating strong impacts on crop
production negatively. According to a recent study (Aggarwal et al. 2019), it is
found that global crop yields declines due to climate change starts as early as the
2020s, and yield losses are projected to increase with time, up to 50% by the 2080s.
Therefore, there is a pressing need to develop climate-resilient crops and agronomic
management strategies to suite for the dynamic environment.

Advances in agronomic management in crops and fields have a great positive
impact on crop production. Some studies even suggest that the influence of manage-
ment is more than the genotype does on the crop yield. For example, it is found thatN
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andwater limit crop yieldmore than plant genetics (Sinclair andRufty 2012). A study
from Brisson et al. (2010) also suggested that wheat yield was significantly affected
by the increased variability in climate during the growing season because of the
heat stress during grain-filling and water stress during stem elongation and tillering.
Affholder et al. (2013) found that poor soil fertility and weed infestation have more
impact on agriculture production than other factors of environment and genotypes.
In addition, research also shows that yield of corn and soybean is heavily affected by
the planting date and planting depth (Baum et al. 2018; Hu and Wiatrak 2012). With
continuous improvement in agronomic management with emerging technologies,
using emerging technologies in precision agriculture, sensors, internet of things, big
data and artificial intelligence, management will make a greater contribution in crop
yield improvement.

Although the production of major commodity crops has been increasing over time
due to the improved genetics, improvedmanagement, and environmental adaptations,
their contributions of each factor are difficult to quantify due to the complicated inter-
actions and the dynamic nature of environment andmanagement practices. However,
in a study, Fischer (2009) found that Australian wheat yield had a 1.3% total increase
per year over the past 100 years. The author attributed 0.2% of the total increase to
the environment, 0.5% to genetic improvement and the interaction of genotype with
management, and 0.6% to management alone, which are equivalent to about 30%
to genetic improvement, 15% to environment adoption, and 55% to management
(Hillel and Rosenzweig 2013). In addition, Duvick (2005) argued that increases in
maize yield in the past 50 years were due equally to breeding and improved manage-
ment. Although the yield gain of the world’s staple crops continues improving due
to improvement in breeding technologies (Li et al. 2018), the yield increases also
depend on the improved agronomic management to realize the potential of these
breeding-based improvements in farmer’s fields (Fischer and Connor 2018). The
potential yield is defined as the yield of the best-adapted cultivar with currently the
best agronomic management practices ensuring the absence of manageable abiotic
and biotic stresses (Fischer 2015). However, the gap between potential yield and
yield in farm yields can be substantial (Beres et al. 2020), for example, the farm
yields of rice, wheat, and maize are about 80% of potential yields under irrigated
conditions, and 50% or less under rainfed conditions (Lobell et al. 2009). Therefore,
it is critical to consider the interaction effects of G×E×M as the key to screening
genotypes and closing yield gaps (Hatfield and Walthall 2015).

Field and crop management strategies have been improved significantly thanks
to the advances in precision agriculture, sensing technologies, data processing, and
analysis (Yost et al. 2019). However, there are practical constraints in management
that are needed to be considered when maximizing the crop yield. Management
strategies are heavily dependent on accumulative experiences from practices, but
climate change makes it difficult to make proper decisions on management for the
unpredictable environment, which brings significant challenges in crop management
to maintain a stable and high yield production. In addition, although modern agricul-
ture with advancedmanagement has been successful in increasing food production, it
has also caused extensive environmental damage. For example, increasing fertilizer
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use has led to the degradation of water quality in many regions (Bennett et al. 2001;
Matson et al. 1997). It is also evident that some irrigated lands have become heavily
salinized, causing the worldwide loss of ∼1.5 million hectares of arable land per
year, along with an estimated $11 billion losses in production (Wood et al. 2000). Up
to ∼40% of global croplands may also be experiencing some degree of soil erosion,
reduced fertility, or overgrazing (Wood et al. 2000). Therefore, over-managed agri-
cultural systems may not be beneficial for sustainable agricultural system in long
run.

There are very limited natural resources that are available for farmers to make
desired management practices to optimize crop production. For example, 92% of
the soybean acreage in the United States is under rainfed dryland conditions (Irwin
et al. 2017) where crop productivity is always threatened by unpredictable drought
but irrigation is not an option. In addition, the management of crops under flooding
conditions is always challenging. It was reported that the 2011 Mississippi River
flood caused a loss of $2 billion in crop damages when fewer than 6,500 acres of
soybeanwere harvested in the southern counties of Illinois (Olson andMorton 2013).
The situation was even worse in 2015, as more than half of the states’ soybean
crop was affected and the crop damage caused by the floods of 2019 was even
severer than that of 2015. The crop yield loss due to the constraints in management
may be compensated through the development of new crop varieties with flood
or drought-resilient traits. The conventional breeding programs are transferring to
more efficientmodern breedingprograms through integrating emerging technologies,
especially the high-throughput phenotyping technology. It is believed by authors that
the contributions of genetic improvement based on high-throughput phenotyping
technology will increase crop yield gains significantly in the near future. In the
following sections of this chapter, we will focus on how to improve the yield gain in
breeding programs using high-throughput phenotyping technology.

1.2 Breeder’s Equation for Crop Production

Crop yield can be improved through optimal management and breeding new crop
varieties with improved traits. The improvement of crop yield and other traits
due to artificial or genomic selection is quantified using the genetic gain equation
(commonly known as ‘breeder’s equation’) calculated using Eq. 1.2 (Eberhart 1970;
Li et al. 2018).

�G = irσA

L
(1.2)

where �G is the genetic gain (yearly gain due to genetic factors), i is the selection
intensity, r is the selection accuracy, σA is the square root of the additive genetic
variance within the population, and L is the length of breeding cycle interval or
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generation. The breeder’s equation provides general guidance and useful frame-
work for the design of breeding programs leading to the improvement of genetic
gain. It can be seen from Eq. 1.2 that genetic gain is positively proportional to the
parameters of selection intensity, selection accuracy and genetic variance. Selection
intensity is determined by the selection rate, i.e., the proportion of the population
selected from the total population (Xu et al. 2017). A larger population size allows
a greater selection intensity and improves the probability of identifying progenies
with desired traits, such as high yield potential and resilience to stresses. Therefore,
the first way to improve the genetic gain is to increase the breeding population.
The second favorable factor, the selection accuracy, refers to the accuracy of selec-
tion on breeding value. The selection accuracy is determined by heritability and
can be increased by increasing the marker density. The advances in high-throughput
sequencing technologies and genomic selection (GS) can remarkably improve the
selection accuracy (Bhat et al. 2016; Crossa et al. 2017). In addition, the selection
accuracy can be increased by increasing repeatability in the breeding population thus
increases the selection response for the trait of interest (Araus et al. 2018). For the
breeding programs with a fixed budget, it needs to balance between the population
and replication to maximize the genetic gain.

In addition, genetic variance is also positive to the increase of genetic gain.
Although the vast number of valuable germplasm collections in gene banks can
be used as a source to acquire genetic variation, the contribution is limited by the
time and resources required to precisely characterize the accessions at large scale,
and identifying and transferring the useful alleles into adapted germplasm. Advanced
tools are needed to identify more molecular markers that can reveal genetic variation
(Xu et al. 2017) and accurately quantify genetic variations due to environment (Araus
et al. 2018). In the equation, the length of breeding cycle interval or generation is
directly reciprocal to genetic gain. Conventional breeding programs have a fixed
timeline for the development of new varieties and it is hard to change the breeding
cycles. However, in recent years, researchers are studying a method called ‘speed
breeding’ or ‘rapid breeding’ to shorten the breeding cycle and accelerate breeding
and research programs (Li et al. 2018; Watson et al. 2018). For example, speed
breeding technology is potential to achieve up to six generations per year for spring
wheat, durumwheat, barley, chickpea, and pea, and four generations for canola under
normal glasshouse conditions (Watson et al. 2018). In addition, breeding cycle is also
potentially to accelerate by improving the prediction accuracy and discovering more
reliable secondary crop traits using emerging phenotyping tools (Araus et al. 2018).

In summary, there are many approaches to increase genetic gain of a breeding
program by solving the breeder’s equation (Cobb et al. 2019; Hickey et al. 2019;
Pieruschka and Schurr 2019). To develop next-generation breeding programs, we
should consider some critical factors closely related to genetic gains (Araus et al.
2018; Awada et al. 2018; Cobb et al. 2019; Li et al. 2018; Zhao et al. 2017). Some
examples include: (a) how to increase the capacity for larger breeding population
to enable higher selection intensity; (b) how to enhance selection accuracy using
emerging technologies; (c) how to identify genetic variations; and (d) how to reduce
the breeding cycles. While we continue advancing the molecular-based breeding
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strategies using genomic technology, special efforts should be taken to eliminate
the bottlenecks in current breeding programs, i.e., how to measure plant phenotypes
efficiently and accurately for a large breeding population. Current breeding programs
are limited by cost, time, human labor, land and other resources to efficiently scan
a large population of progenies (Rebetzke et al. 2016), which limit the selection
intensity, affect the genetic accuracy, and result in low genetic gain. Therefore, the
development and application of low-cost, high-throughput phenotyping tools allow
reallocation of resources tomanage larger populations, enable an increase in selection
intensity within a fixed budget.

1.3 High-Throughput Crop Phenotyping

The term “phenotype” as a counterpart concept to “genotypes” was created one
century ago (Johannsen 1903, 1911), which has been used to describe a wide range
of traits in plants, microbes, fungi and animals (Walter et al. 2015). Plant phenotype
is the functional plant body that is formed during plant growth and development from
the dynamic interaction between the genetic background (genotype) and the physical
world in which plants develop (environment). The term ‘phenotyping’ began using in
the 1960s (Walter et al. 2015) and later was referred to as the set ofmethodologies and
protocols used to accurately measure plant growth, architecture, and composition at
different scales (Fiorani and Schurr 2013). Traditionally, to select superior progenies
or identify gene loci in the genome controlling a trait, usually, hundreds to thou-
sands of plant phenotypes aremeasured by breeders using low-throughput laboratory
assessments, visual observations, and manual tools. Traditional crop phenotyping
methods are labor-intensive, time-consuming, subjective, and frequently destructive
to plants (Chen et al. 2014; Furbank and Tester 2011). The lags in the advances
of emerging technologies and low throughput in plant phenotyping have become a
critical constraint to crop breeding and functional genomics studies (Deery et al.
2016).

High-throughput phenotyping (HTP) technologies emerged in the last decade
thanks to the advances and reduced cost in sensor, computer vision, automation
and advanced machine learning technologies. Crop HTP refers as the gathering of
multi-dimensional phenotypic data at multiple levels from cell, organ, plant to popu-
lation using emerging technologies (Lobos et al. 2017; Zhao et al. 2019). A compre-
hensive HTP system is consisted of supportive hardware (sensors and platforms)
and computation component (data process and analytics). Widely used sensors in
HTP technology are primarily non-contact and non-invasive sensors, such as digital
cameras (e.g., visible, multispectral, hyperspectral Chlorophyll fluorescence and
thermal cameras), three-dimensional depth sensors (LiDAR, time-of-flight camera)
(see list of the cameras in Araus et al. 2018 and Zhao et al. 2019). Explorable research
is testing and adopting some advanced imaging techniques that are widely used in
medical applications, such as magnetic resonance imaging (MRI), positron emission
tomography (PET), and computed tomography (CT), to HTP systems in the growth
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chamber or greenhouse. The advances in sensor technology are primarily driven
by the industry sector, while efforts have been made toward integrating them to
crop HTP systems. In addition, supportive hardware also includes automation plat-
forms for efficient data collection. Commonly used automation platforms include
track-based automation systems (Zhou et al., 2018a; b), indoor and outdoor robotic
systems (Awada et al. 2018; Chapman et al. 2014; Yang et al. 2020; Zhao et al. 2019),
unmanned aerial system (UAS) (Yang et al. 2017), which are commercially available
or developed by the research team for special need.

The more important component of an HTP system is data processing and analytic
system. Current HTP systems, especially high-resolution imaging systems, are ready
to collect high-dimensional data of crops of a large population. However, researchers
will realize soon that they may be overwhelmed by the huge data that are beyond
their ability to handle (Blumenthal et al. 2020; Yang et al. 2020; Zhao et al. 2019).
Therefore, one of the urgent tasks for HTP system is to develop frameworks or
pipelines for efficient data processing and analytics that can translate sensor data
to important crop traits (Blumenthal et al. 2020; Hallowell et al. 2018; Zhou et al.
2018a). More efforts should be taken to develop and integrate emerging technologies
such as cloud computing, edge computing, machine learning, deep learning and
artificial intelligence (AI) into HTP systems. With the continuous efforts from the
community, HTP technology can potentially be the key component to solve the
breeder’s equation and accelerate the process of breeding new crop varieties with
advanced traits. The following examples demonstrate the potential applications of
HTP technologies to breeding programs based on the breeder’s equation:

(1) Delivery efficient and objective measurements of crop traits. High-throughput
phenotyping systems are able to phenotype breeding fields in a more efficient
and cost-effective way, which allows an increase in the capacity of breeding
programs to handle a larger breeding population and improve the selection
intensity. For example, UAS-based HTP platforms are able to screen breeding
fields within a short period (e.g., 30 min for a 5-acre field). The implements of
spectrum reflectance, photogrammetry, and computer vision provide consistent
criteria to estimate crop traits inmultiple dimensions, such as plant height, plant
temperature, chlorophyll content.

(2) Identification of novel crop traits. Advanced sensors (e.g., hyperspectral and
infrared cameras) capture crop information beyond human vision and sense.
Advanced data analytics andAImodels reveal hidden information from human
and sensor data and have great potential in discovering novel crop traits. The
novel traits can be used to describe crop performance at a specific growth stage
(e.g., emerging, flowering or harvesting) or to profile crop dynamic responses to
environments along growth seasons. Novel crop traits are able to provide addi-
tional information to quantify subtle genetic variations of different genotypes
and potentially increase the genetic variance.

(3) Integration of phenotypic data and genotypic data. HTP-based phenotypes
could be integrated into genetic analysis, such as quantitative trait locus (QTL)
mapping or genome-wide association study (GWAS) to identify key genetic
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elements underlying or associated with the yield gain or stress tolerance.
The genetic elements for favorable crop traits could be further incorporated
into the current germplasm through marker-assisted selection (MAS) during
breeding. The integration will allow accurate selection, reduce breeding cycles
and increase the genetic gain.

(4) Allow advanced models to integrate G×E×M. High-throughput phenotyping
technology allows collecting big data of crops in a high spatiotemporal reso-
lution and discovering novel crop traits, which will enable the integration with
environment and management to reveal G × E × M interactions. Advanced
models based on machine learning and deep learning technologies will trans-
form breeding program from descriptive phenotyping, to predictive pheno-
typing and prescriptive phenotyping that allow ‘manufacture’ crop traits based
on needs.

In summary crop HTP technology provides a potential solution to the breeder’s
equation tomaximize the genetic gains by increasing the selection intensity and accu-
racy, improving the identification of genetic variations, and accelerating breeding
cycles. Crop HTP technology uses an interdisciplinary and holistic approach to inte-
grate research in agronomy, life sciences, information science, mathematics, and
engineering sciences, and combines high-performance computing and artificial intel-
ligence technology. Advanced data analytic methods (e.g., machine learning, deep
learning) are used to analyze the multifarious phenotypic information of crops and
develop predictive and prescriptive models to phenotype crops in a high-throughput,
multi-dimensional, big-data, intelligent and automatically measuring manner. The
big data of plant phenotypic data collected by plant HTP systems will be inte-
grated with multi-scale genomic and environmental data to mining genes associated
with important agronomic traits, and propose new intelligent solutions for precision
breeding (Zhao et al. 2019). This book provides showcases HTP applications in the
world-leading research programs and by the active researchers and scientists in the
areas of crop breeding, genetics, agronomy, engineering, computers, and information
technology. The following chapters will focus on the showcases (a) application of
merging sensing technology (sensors), (b) introduction ofHTPplatforms (hardware),
(c) approaches of data mining and analytics (big data and AI) and (d) development
of HTP framework and pipeline in various crops. We hope this book provides the
state-of-the-art of HTP technology and its applications in plant breeding and genetics
and brings some case studies that can help researchers to develop and advance the
HTP in their research projects.
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