Fundamentals of Quality Control and Improvement

FIFTH EDITION

Amitava Mitra

WILEY
FUNDAMENTALS OF QUALITY CONTROL AND IMPROVEMENT
FUNDAMENTALS
OF QUALITY CONTROL
AND IMPROVEMENT

Fifth Edition

AMITAVA MITRA
Auburn University
Auburn, USA

WILEY
To the memory of my parents,
who instilled the importance of
an incessant inquiry for knowledge —
and whose divine inspiration transcends mortality
CONTENTS

PREFACE xix

ABOUT THE COMPANION WEBSITE .. xxiii

PART I PHILOSOPHY AND FUNDAMENTALS 1

1 Introduction to Quality Control and the Total Quality System 3

1-1 Introduction and Chapter Objectives, 3
1-2 Evolution of Quality Control, 4
1-3 Quality, 7
 Quality Characteristics, 8
 Variables and Attributes, 8
 Defects, 9
 Standard or Specification, 9
 Quality of Design, 10
 Quality of Conformance, 10
 Quality of Performance, 11
1-4 Quality Control, 12
 Off-Line Quality Control, 12
 Statistical Process Control, 12
 Acceptance Sampling Plans, 13
1-5 Quality Assurance, 13
1-6 Quality Circles and Quality Improvement Teams, 14
1-7 Customer Needs and Market Share, 15
 Kano Model, 15
1-8 Benefits of Quality Control and the Total Quality System, 16
 Total Quality System, 17
1-9 Quality and Reliability, 18
1-10 Quality Improvement, 18
1-11 Product and Service Costing, 19
 Activity-Based Costing, 20
Contents

1-12 Quality Costs, 23
 Prevention Costs, 23
 Appraisal Costs, 23
 Internal Failure Costs, 24
 External Failure Costs, 24
 Hidden Failure Costs, 24
 Quality Costs Data Requirements, 24
 Process Cost Approach, 26
1-13 Measuring Quality Costs, 27
 Impact of Quality Improvement on Quality Costs, 29
1-14 Management of Quality, 31
1-15 Quality and Productivity, 34
 Effect on Cost, 34
 Effect on Market, 34
1-16 Total Quality Environmental Management, 37
 Green Supply Chain, 39
 Summary, 40
 Key Terms, 41
 Exercises, 41
 References, 46

2 Some Philosophies and Their Impact on Quality 47

 2-1 Introduction and Chapter Objectives, 47
 2-2 Service Industries and Their Characteristics, 47
 Differences in the Manufacturing and Service Sectors, 49
 Service Quality Characteristics, 50
 Measuring Service Quality, 52
 Techniques for Evaluating Service Quality, 52
 2-3 Model for Service Quality, 53
 2-4 W. Edwards Deming’s Philosophy, 56
 Extended Process, 57
 Deming’s 14 Points for Management, 58
 Deming’s Deadly Diseases, 72
 2-5 Philip B. Crosby’s Philosophy, 75
 Four Absolutes of Quality Management, 76
 14-Step Plan for Quality Improvement, 76
 2-6 Joseph M. Juran’s Philosophy, 78
 Quality Trilogy Process, 79
 Quality Planning, 79
 Quality Control, 80
 Quality Improvement, 81
 2-7 The Three Philosophies Compared, 82
 Definition of Quality, 82
 Management Commitment, 82
 Strategic Approach to a Quality System, 83
3 Quality Management: Practices, Tools, and Standards

3-1 Introduction and Chapter Objectives, 89
3-2 Management Practices, 90
 Total Quality Management, 90
 Vision and Quality Policy, 92
 Balanced Scorecard, 94
 Performance Standards, 96
3-3 Quality Function Deployment, 99
 QFD Process, 100
3-4 Benchmarking and Performance Evaluation, 106
 Benchmarking, 107
 Quality Auditing, 110
 Vendor Selection and Certification Programs, 112
 Vendor Rating and Selection, 112
3-5 Health Care Analytics, 115
 Health Care Analytics and Big Data, 116
 Uniqueness of Health Care, 116
 Challenges in Health Care Quality, 121
3-6 Tools for Continuous Quality Improvement, 124
 Pareto Diagrams, 124
 Flowcharts, 124
 Cause-and-Effect Diagrams, 126
 Scatterplots, 126
 Multivariable Charts, 127
 Matrix and Three-Dimensional Plots, 129
 Failure Mode and Effects Criticality Analysis, 131
3-7 International Standards ISO 9000 and Other Derivatives, 137
 Features of ISO 9000, 137
 Other Industry Standards, 138
Case Study, 139
Summary, 143
Key Terms, 144
Exercises, 145
References, 149
PART II STATISTICAL FOUNDATIONS AND METHODS OF QUALITY IMPROVEMENT 151

4 Fundamentals of Statistical Concepts and Techniques in Quality Control and Improvement 153

4-1 Introduction and Chapter Objectives, 154
4-2 Population and Sample, 154
4-3 Parameter and Statistic, 154
4-4 Probability, 155
 Relative Frequency Definition of Probability, 155
 Simple and Compound Events, 155
 Complementary Events, 156
 Additive Law, 157
 Multiplicative Law, 158
 Independence and Mutually Exclusive Events, 158
4-5 Descriptive Statistics: Describing Product or Process Characteristics, 160
 Data Collection, 160
 Measurement Scales, 162
 Measures of Central Tendency, 163
 Measures of Dispersion, 165
 Measures of Skewness and Kurtosis, 170
 Measures of Association, 173
4-6 Probability Distributions, 177
 Cumulative Distribution Function, 179
 Expected Value, 179
 Discrete Distributions, 180
 Continuous Distributions, 184
4-7 Inferential Statistics: Drawing Conclusions on Product and Process Quality, 193
 Sampling Distributions, 193
 Estimation of Product and Process Parameters, 194
 Hypothesis Testing, 203
Summary, 216
Appendix: Approximations to Some Probability Distributions, 216
 Binomial Approximation to the Hypergeometric, 216
 Poisson Approximation to the Binomial, 216
 Normal Approximation to the Binomial, 217
 Normal Approximation to the Poisson, 218
Key Terms, 219
Exercises, 220
References, 232

5 Data Analyses and Sampling 233

5-1 Introduction and Chapter Objectives, 233
5-2 Empirical Distribution Plots, 234
Selection of Control Limits, 291
Errors in Making Inferences from Control Charts, 293
Effect of Control Limits on Errors in Inference Making, 297
Warning Limits, 298
Effect of Sample Size on Control Limits, 298
Average Run Length, 299

6-4 Selection of Rational Samples, 301
Sample Size, 301
Frequency of Sampling, 301

6-5 Analysis of Patterns in Control Charts, 302
Some Rules for Identifying an Out-of-Control Process, 302
Interpretation of Plots, 304
Determination of Causes of Out-of-Control Points, 306

6-6 Maintenance of Control Charts, 306
Summary, 307
Key Terms, 307
Exercises, 307
References, 310

7 Control Charts for Variables

7-1 Introduction and Chapter Objectives, 312
7-2 Selection of Characteristics for Investigation, 313
7-3 Preliminary Decisions, 314
Selection of Rational Samples, 314
Sample Size, 315
Frequency of Sampling, 315
Choice of Measuring Instruments, 315
Design of Data Recording Forms, 315
7-4 Control Charts for the Mean and Range, 315
Development of the Charts, 315
Variable Sample Size, 321
Standardized Control Charts, 321
Control Limits for a Given Target or Standard, 322
Interpretation and Inferences from the Charts, 325
Control Chart Patterns and Corrective Actions, 327
7-5 Control Charts for the Mean and Standard Deviation, 333
No Given Standards, 334
Given Standard, 335
7-6 Control Charts for Individual Units, 338
No Given Standards, 339
Given Standard, 340
7-7 Control Charts for Short Production Runs, 342
\(\bar{X} \) - and R-Charts for Short Production Runs, 342
Z-MR Chart, 342
7-8 Other Control Charts, 344
Cumulative Sum Control Chart for the Process Mean, 344
Tabular Method, 345
CONTENTS

V-Mask Method, 348
Cumulative Sum for Monitoring Process Variability, 351
Moving-Average Control Chart, 351
Exponentially Weighted Moving-Average or Geometric
Moving-Average Control Chart, 354
Modified Control Chart, 357
Acceptance Control Chart, 361
7-9 Risk-Adjusted Control Charts, 363
Risk-Adjusted Cumulative Sum (RACUSUM) Chart, 364
Risk-Adjusted Sequential Probability Ratio Test (RASPRT), 365
Risk-Adjusted Exponentially Weighted Moving-Average (RAEWMA)
Chart, 366
Variable Life-Adjusted Display (VLAD) Chart, 367
7-10 Multivariate Control Charts, 370
Controlling Several Related Quality Characteristics, 370
Hotelling’s T^2 Control Chart and Its Variations, 373
Phase 1 and Phase 2 Charts, 374
Usage and Interpretations, 376
Individual Observations with Unknown
Process Parameters, 377
Generalized Variance Chart, 378
Case Study, 384
Summary, 388
Key Terms, 389
Exercises, 390
References, 403

8 Control Charts for Attributes

8-1 Introduction and Chapter Objectives, 406
8-2 Advantages and Disadvantages of Attribute Charts, 406
Advantages, 406
Disadvantages, 407
8-3 Preliminary Decisions, 408
8-4 Chart for Proportion Nonconforming: p-Chart, 408
Construction and Interpretation, 409
Variable Sample Size, 416
Risk-Adjusted p-Charts in Health Care, 420
Special Considerations for p-Charts, 424
8-5 Chart for Number of Nonconforming Items: np-Chart, 425
No Standard Given, 425
Standard Given, 426
8-6 Chart for Number of Nonconformities: c-Chart, 427
No Standard Given, 428
Standard Given, 428
Probability Limits, 430
Applications in Health Care When Nonoccurrence of Nonconformities Are
Not Observable, 431
8-7 Chart for Number of Nonconformities Per Unit: u-Chart, 433
Variable Sample Size and No Specified Standard, 433
Risk-Adjusted \(u \)-Charts in Health Care, 436
8-8 Chart for Demerits Per Unit: \(u \)-Chart, 439
Classification of Nonconformities, 439
Construction of a \(U \)-Chart, 439
8-9 Charts for Highly Conforming Processes, 442
Transformation to Normality, 442
Use of Exponential Distribution for Continuous Variables, 442
Use of Geometric Distribution for Discrete Variables, 443
Probability Limits, 443
Applications in Health Care of Low-Occurrence Nonconformities, 445
8-10 Operating Characteristic Curves for Attribute Control Charts, 447
Case Study, 450
Summary, 455
Key Terms, 455
Exercises, 456
References, 469

9 Process Capability Analysis

9-1 Introduction and Chapter Objectives, 471
9-2 Specification Limits and Control Limits, 472
9-3 Process Capability Analysis, 473
 Process Capability, 474
9-4 Natural Tolerance Limits, 475
 Statistical Tolerance Limits, 476
9-5 Specifications and Process Capability, 476
9-6 Process Capability Indices, 479
 \(C_p \) Index, 479
 Upper and Lower Capability Indices, 480
 \(C_{pk} \) Index, 481
 Capability Ratio, 483
 Taguchi Capability Index, \(C_{pm} \), 484
 \(C_{pmk} \) Index, 484
 Confidence Intervals and Hypothesis Testing on Capability Indices, 485
 Comparison of Capability Indices, 486
 Effect of Measurement Error on Capability Indices, 490
 Gage Repeatability and Reproducibility, 492
 Evaluation of Measurement Systems, 493
 Metrics for Evaluation of Measurement Systems, 493
 Preparation for a Gage Repeatability and Reproducibility Study, 494
 \(C_p \) Index and the Nonconformance Rate, 497
9-7 Process Capability Analysis Procedures, 498
 Estimating Process Mean and Standard Deviation, 498
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-8</td>
<td>Capability Analysis for Nonnormal Distributions, 500</td>
</tr>
<tr>
<td></td>
<td>Identification of Appropriate Distribution, 500</td>
</tr>
<tr>
<td></td>
<td>Box-Cox Transformation, 500</td>
</tr>
<tr>
<td></td>
<td>Using Attribute Charts, 500</td>
</tr>
<tr>
<td></td>
<td>Using a Nonparametric Approach, 501</td>
</tr>
<tr>
<td>9-9</td>
<td>Setting Tolerances on Assemblies and Components, 502</td>
</tr>
<tr>
<td></td>
<td>Tolerances on Assemblies and Subassemblies, 502</td>
</tr>
<tr>
<td></td>
<td>Tolerance Limits on Individual Components, 504</td>
</tr>
<tr>
<td></td>
<td>Tolerance on Mating Parts, 505</td>
</tr>
<tr>
<td></td>
<td>Nonlinear Combinations of Random Variables, 508</td>
</tr>
<tr>
<td>9-10</td>
<td>Estimating Statistical Tolerance Limits of a Process, 509</td>
</tr>
<tr>
<td></td>
<td>Statistical Tolerance Limits Based on Normal Distribution, 509</td>
</tr>
<tr>
<td></td>
<td>Nonparametric Statistical Tolerance Limits, 510</td>
</tr>
<tr>
<td></td>
<td>Case Study, 511</td>
</tr>
<tr>
<td></td>
<td>Summary, 515</td>
</tr>
<tr>
<td></td>
<td>Key Terms, 516</td>
</tr>
<tr>
<td></td>
<td>Exercises, 516</td>
</tr>
<tr>
<td></td>
<td>References, 525</td>
</tr>
</tbody>
</table>

PART IV PRODUCT AND PROCESS DESIGN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Reliability, 529</td>
</tr>
<tr>
<td>10-1</td>
<td>Introduction and Chapter Objectives, 529</td>
</tr>
<tr>
<td>10-2</td>
<td>Reliability, 530</td>
</tr>
<tr>
<td>10-3</td>
<td>Life-Cycle Curve and Probability Distributions in Modeling Reliability, 530</td>
</tr>
<tr>
<td></td>
<td>Probability Distributions to Model Failure Rate, 531</td>
</tr>
<tr>
<td></td>
<td>Availability, 534</td>
</tr>
<tr>
<td>10-4</td>
<td>System Reliability, 534</td>
</tr>
<tr>
<td></td>
<td>Systems with Components in Series, 535</td>
</tr>
<tr>
<td></td>
<td>Systems with Components in Parallel, 537</td>
</tr>
<tr>
<td></td>
<td>Systems with Components in Series and in Parallel, 539</td>
</tr>
<tr>
<td></td>
<td>Systems with Standby Components, 540</td>
</tr>
<tr>
<td>10-5</td>
<td>Operating Characteristic Curves, 542</td>
</tr>
<tr>
<td>10-6</td>
<td>Reliability and Life Testing Plans, 544</td>
</tr>
<tr>
<td></td>
<td>Types of Tests, 544</td>
</tr>
<tr>
<td></td>
<td>Life Testing Plans Using the Exponential Distribution, 546</td>
</tr>
<tr>
<td>10-7</td>
<td>Survival Analysis, 552</td>
</tr>
<tr>
<td></td>
<td>Estimation of the Survival Function, 552</td>
</tr>
<tr>
<td></td>
<td>Confidence Intervals for the Survival Function, 557</td>
</tr>
<tr>
<td></td>
<td>Comparison of Survival Functions of Two Groups, 559</td>
</tr>
<tr>
<td></td>
<td>Summary, 563</td>
</tr>
<tr>
<td></td>
<td>Key Terms, 563</td>
</tr>
<tr>
<td></td>
<td>Exercises, 564</td>
</tr>
<tr>
<td></td>
<td>References, 567</td>
</tr>
</tbody>
</table>
11 Experimental Design and the Taguchi Method

11-1 Introduction and Chapter Objectives, 570
11-2 Experimental Design Fundamentals, 570
 Features of Experimentation, 574
11-3 Some Experimental Designs, 575
 Completely Randomized Design, 576
 Randomized Block Design, 582
 Latin Square Design, 587
11-4 Factorial Experiments, 595
 Two-Factor Factorial Experiment Using a Completely
 Randomized Design, 596
 Two-Factor Factorial Experiment Using a
 Randomized Block Design, 600
 Role of Contrasts, 606
 The 2^k Factorial Experiment, 612
 Confounding in 2^k Factorial Experiments, 616
 Fractional Replication in 2^k Experiments, 617
11-5 The Taguchi Method, 623
11-6 The Taguchi Philosophy, 624
11-7 Loss Functions, 627
 Target Is Best, 628
 Smaller Is Better, 631
 Larger Is Better, 632
11-8 Signal-to-Noise Ratio and Performance Measures, 634
 Target Is Best, 634
 Smaller Is Better, 637
 Larger Is Better, 637
11-9 Critique of S/N Ratios, 637
11-10 Experimental Design in the Taguchi Method, 638
 Orthogonal Arrays and Linear Graphs, 639
 Estimation of Effects, 649
11-11 Parameter Design in the Taguchi Method, 654
 Application to Attribute Data, 656
11-12 Critique of Experimental Design and the Taguchi Method, 658
 Summary, 660
 Key Terms, 661
 Exercises, 662
 References, 672

12 Process Modeling Through Regression Analysis

12-1 Introduction and Chapter Objectives, 675
12-2 Deterministic and Probabilistic Models, 676
12-3 Model Assumptions, 678
12-4 Least Squares Method for Parameter Estimation, 680
 Performance Measures of a Regression Model, 683
12-5 Model Validation and Remedial Measures, 686
 Linearity of Regression Function, 686

xvi CONTENTS
Contents

- Constancy of Error Variance, 687
- Normality of Error Component, 689
- Independence of Error Components, 689

12-6 Estimation and Inferences from a Regression Model, 690

- Inferences on Individual β_i Parameters, 691
- Inferences on All β_i, $i = 1, 2, \ldots, p - 1$ Parameters, 691
- Simultaneous Inferences on Some β_i, $i = 1, 2, \ldots, p - 1$, 691
- Hypothesis Tests on a Subset of β_i Parameters, 692
- Estimation of Mean Response, 692
- Simultaneous Confidence Intervals for Several Mean Responses, 693
- Prediction of Individual Observations, 693
- Simultaneous Prediction Intervals for Several New Observations, 693

12-7 Qualitative Independent Variables, 696

- Additive Model, 696
- Interaction Model, 697

12-8 Issues in Multiple Regression, 702

- Data from a Retrospective Versus Designed Experiment, 702
- Outliers in the Space of the Independent Variables, 703
- Outliers for the Dependent Variable, 704
- Influential Observations, 705
- Multicollinearity, 706
- Detection of Multicollinearity, 706
- Effects of Multicollinearity, 707

12-9 Logistic Regression, 707

- Binary Response Variable, 708
- Assumptions in Regression, 709
- Nominal Polytomous Response Variable, 712
- Ordinal Polytomous Response Variable, 715

12-10 Classification Problems, 719

- Performance Measures in Classification Problems, 720
- Tests of Association in 2×2 Contingency Tables, 722
- Receiver Operating Characteristic Curve, 723

Summary, 725
Key Terms, 725
Exercises, 726
References, 732

Appendixes

- A-1 Cumulative Binomial Distribution, 733
- A-2 Cumulative Poisson Distribution, 738
- A-3 Cumulative Standard Normal Distribution, 740
- A-4 Values of t for a Specified Right-Tail Area, 743
- A-5 Chi-Squared Values for a Specified Right-Tail Area, 745
- A-6 Values of F for a Specified Right-Tail Area, 747
- A-7 Factors for Computing Centerline and Three-Sigma Control Limits, 753
- A-8 Uniform Random Numbers, 754

Index

755
This book covers the foundations of modern methods of quality control and improvement that are used in the manufacturing and service industries. Quality is key to surviving tough competition in a dynamic and global environment. Consequently, organizations need technically competent people who are well-versed in statistical quality control and improvement. This book should serve the needs of students in business and management and students in engineering, technology, and related disciplines. Professionals will find this book to be a valuable reference in the field.

An outgrowth of many years of teaching, research, and consulting in the field of quality assurance and statistical process control, the methods discussed in this book apply statistical foundations to real-world situations. Mathematical derivations and proofs are kept to a minimum to allow a better flow of material. Although an introductory course in statistics would be useful to a reader, the foundations of statistical tools and techniques discussed in Chapter 4 should enable students without a statistical background to understand the material.

Prominently featured are many real-world examples. For each major concept, at least one example demonstrates its application. The field of health care within the service sector is of immense importance. From an individual or a population perspective, creating processes that provide quality health care are desirable. Additionally, the growing escalation of the cost of providing quality care raises the question of improving the effectiveness and efficiency of all processes associated with the delivery of such services. For this reason, issues related to health care quality have been addressed in several chapters, for example, Chapters 3, 5, 7, 8, 10, and 12.

The book is divided into four parts. Part I, which deals with the philosophy and fundamentals of quality control, consists of three chapters. Chapter 1 is an introduction to quality control and the total quality system. In addition to introducing the reader to the nomenclature associated with quality control and improvement, it provides a framework for the systems approach to quality. Discussions of quality costs and their measurement, along with activity-based costing, are presented. In Chapter 2 we examine philosophies of such leading experts as Deming, Crosby, and Juran. Deming’s 14 points for management are analyzed, and the three philosophies are compared. Features of quality in the service sector are introduced. Chapter 3 covers quality management practices, tools, and standards. Topics such as total quality management, balanced scorecard, quality function deployment, benchmarking, failure mode and effects criticality analysis, and tools for quality improvement are presented. Concepts of health care analytics and its associated challenges are discussed.
Part II deals with the statistical foundations of quality control and consists of two chapters. Chapter 4 offers a detailed coverage of statistical concepts and techniques in quality control and improvement. It presents a thorough treatment of inferential statistics. Depending on the student’s background, only selected sections of this chapter will need to be covered.

Chapter 5 covers some graphical methods of analyzing empirical distributions. Identification of the population distribution using probability plotting along with the several transformations to achieve normality are presented. Analysis of count data, including contingency table analysis and measures of association, are discussed. Strategic and operational decision making, through analyses of survey data from customers, is included. Finally, some common sampling designs and determination of an appropriate sample size are features of this chapter.

The field of statistical quality control consists of two areas: statistical process control and acceptance sampling. Part III deals with statistical process control and consists of four chapters. Chapter 6 provides an overview of the principles and use of control charts. A variety of control charts for variables are discussed in detail in Chapter 7. In addition to charts for the mean and range, those for the mean and standard deviation, individual units, cumulative sum, moving average, and geometric moving average are presented. Several types of risk-adjusted control charts are included. Multivariate control charts are also introduced. Control charts for attributes are discussed in Chapter 8. Charts such as the \(p \)-chart, \(np \)-chart, \(c \)-chart, \(u \)-chart, \(g \)-chart, and \(U \)-chart are presented. Here also, risk-adjusted \(p \)-charts and \(u \)-charts are included. The topic of process capability analysis is discussed in Chapter 9. The ability of a process to meet customer specifications is examined in detail. Process capability analysis procedures and process capability indices are also treated in depth. The chapter covers proper approaches to setting tolerances on assemblies and components. Part III should form a core of material to be covered in most courses.

Part IV deals with product and process design and consists of three chapters. With the understanding that quality improvement efforts are generally being moved further upstream, these chapters constitute the backbone of current design methodology. Chapter 10 deals with reliability and explores the effects of time on the proper functioning of a product. The topic of survival analysis is included and health-care applications are provided. Chapter 11 provides the fundamentals of experimental design and the Taguchi method. Different designs, such as the completely randomized design, randomized block design, and Latin square design are presented. Estimation of treatment effects using factorial experiments is included. This chapter also provides a treatment of the Taguchi method for design and quality improvement; the philosophy and fundamentals of this method are discussed. Chapter 12 discusses process modeling through regression analysis. Estimation of model parameters, making inferences from the model, and issues in multiple regression are covered. Logistic regression analysis is also introduced. Nominal polytomous and ordinal polytomous response variables are discussed. The problem of classification of a binary response variable and associated performance measures are covered. Various sections of Part V could also be included in the core material for a quality control course.

For a one-semester or one-quarter course, Part I, selected portions of Part II, selected portions of Part III, and selected portions of Part IV could be covered. For a two-semester or two-quarter course, all of Parts II and III, along with portions from Part IV, could be covered as well.
Some major changes have been made keeping with the emphasis in the fourth edition. With the growing importance of the field of health care, an effort has been made to incorporate concepts, tools, and techniques to address issues in the domain of health care quality. These are dealt with over a multitude of chapters, that is, Chapters 3, 5, 7, 8, 10, and 12. Case studies have been included in several chapters.

Chapter 3 now includes a discussion of the uniqueness of the health care sector and the utilization of health care analytics using data, from various sources, to create a decision support system. Such a system will not only improve processes and patient outcomes as well as physician performance but also lead to an improved population health.

An important form of feedback from customers on a product or service is through surveys. In health care, patients, for example, indicate their degree of satisfaction, with the various processes/procedures encountered, through questionnaires that are usually based on a five-point ordinal Likert scale. Chapter 5 presents some methods for displaying and analyzing ordinal or count data based on questionnaires. Strategic implications on decisions for management are also discussed, based on the degree of satisfaction and the degree of importance of each question item included in the survey.

The concept of risk adjustment, as it applies to health care applications, has been incorporated in the material on variable control charts in Chapter 7. In this context, the risk-adjusted cumulative sum chart, risk-adjusted sequential probability ratio test, risk-adjusted exponentially weighted moving average chart, and variable life-adjusted display chart are presented in this chapter.

Under attribute control charts, risk-adjusted p-charts for the proportion of patients that survive a certain type of illness or surgical procedure and risk-adjusted u-charts for monitoring the number of nonconformities per unit, for example, the number of pressure ulcers per patient day, are presented in Chapter 8. Further, monitoring of low-occurrence nonconformities in health care, such as surgical wound infections or gastrointestinal infections, are also discussed. Such monitoring may be accomplished through tracking of the time between events, in this case, infections, through a g-chart.

Another important application in health care is that of survival analysis. Often, in observational studies dealing with patients, the exact time of death of a patient may not be known. Moreover, some patients may leave the observational study. In such instances, censored data are available. The Kaplan–Meier product limit estimator of the survival function is introduced in Chapter 10. Methods are presented for comparison of survival functions of two groups in order to determine the statistical significance of a particular treatment.

The chapter on process modeling through regression analysis has been greatly expanded. Regression modeling is a versatile tool that may be used in manufacturing and service applications. It promotes the development of a functional relationship between a selected dependent variable and one or more independent variables. Chapter 12 discusses the concepts in the formulation of such models and assists with the identification of independent variables that have a significant effect on the dependent variable. In this chapter, logistic regression models are also introduced where the dependent variable is binary in nature. Such models have useful applications in health care. Coverage of nominal polytomous and ordinal polytomous response variables are included. An important problem of classification of a binary response variable and its associated performance measures are discussed.
ACKNOWLEDGMENTS

Many people have contributed to the development of this book, and thanks are due to them. Modern trends in product/process quality through design and improvement, as well as discussions and questions from undergraduate and graduate classes over the years, have shaped this book. Applications encountered in a consulting environment have provided a scenario for examples and exercises. Input from faculty and professional colleagues, here and abroad, has facilitated composition of the material. Constructive comments from the reviewers have been quite helpful. Many of the changes in the fifth edition are based on input from those who have used the book as well as from reviewers.

I am grateful to Margie Maddox of the Harbert College of Business at Auburn University for a remarkable job in the preparation of the manuscript. I would like to thank Minitab, Inc. (Quality Plaza, 1829 Pine Hall Road, State College, PA 16801-3008) for its assistance in providing software support. My editor, Kalli Schultea, and my associate editor, Kathleen Santoloci, are to be commended for their patience and understanding.

Learning is a never-ending process. It requires dedication and perseverance. So does writing and revising a book. That has been my reasoning to my wife, Sujata, and son, Arnab. I believe they understand this—my appreciation to them. Their continued support as well as that of Sharen, my radiant daughter-in-law, has provided the motivation to continue with this work. Adding to this enthusiasm, is the boundless source of joy from my grandson, Dev. The arrival of my second grandson, Riz, reinforces the numerous blessings, I have been fortunate to receive.
ABOUT THE COMPANION WEBSITE

This book is accompanied by a companion website:

www.wiley.com/go/mitra/QualityControl5e

The website includes:
- Instructor’s solutions manual
- Instructor’s Power Point transparencies
- Student’s data files
PART I

PHILOSOPHY AND FUNDAMENTALS
INTRODUCTION TO QUALITY CONTROL AND THE TOTAL QUALITY SYSTEM

1-1 INTRODUCTION AND CHAPTER OBJECTIVES

We were about to embark on a short trip for a few hours, when my daughter-in-law asked curiously, “Dad, have we taken the I-phone that has Dev’s favorite videos?” My grandson, Dev, gets bored if he is not actively participating in something! While snacks are obviously one of those things that will keep him happy, perhaps a diversion without food intake is better. He loves to watch short video clips of his past experiences in different situations—whether it is a birthday party, playing with his friends, or listening to storybooks being read. Hence, the enquiry about the “savior” I-phone. Isn’t it amazing of the rapid pace at which technology keeps on changing? What is more amazing is the proficiency at which children of this decade, in the twenty-first century, are comfortable with technology. It is a part-and-parcel of their life and they feel quite “at home” in maneuvering through various options available through the I-phone. Come to think of it, the design of the I-phone had to keep in minds the “needs of the
customer” as well as the “ease of use of the product.” This is precisely what quality improvement is about to create products or deliver services that meet or exceed the expectations of the customer. In that sense, as customer needs or expectations change with time, the process of quality improvement is a never-ending journey.

The objectives of this chapter are, first, to define quality as it relates to the manufacturing and service sector, to introduce the terminology related to quality, and to set up a framework for the design and implementation of quality. Of importance will be the ability to identify the unique needs of the customer, which will assist in maintaining and growing market share. A study of activity-based product costing will be introduced along with the impact of quality improvement on various quality-related costs. The reader should be able to interpret the relationships among quality, productivity, long-term growth, and customer satisfaction.

1-2 EVOLUTION OF QUALITY CONTROL

The quality of goods produced and services rendered has been monitored, either directly or indirectly, since time immemorial. However, using a quantitative base involving statistical principles to control quality is a modern concept.

The ancient Egyptians demonstrated a commitment to quality in the construction of their pyramids. The Greeks set high standards in arts and crafts. The quality of Greek architecture of the fifth century B.C. was so envied that it profoundly affected the subsequent architectural constructions of Rome. Roman-built cities, churches, bridges, and roads inspire us even today.

During the Middle Ages and up to the nineteenth century, the production of goods and services was confined predominantly to a single person or a small group. The groups were often family-owned businesses, so the responsibility for controlling the quality of a product or service lay with that person or small group—those also responsible for producing items conforming to those standards. This phase, comprising the time period up to 1900, has been labeled by Feigenbaum (1983) the operator quality control period. The entire product was manufactured by one person or by a very small group of persons. For this reason, the quality of the product could essentially be controlled by a person who was also the operator, and the volume of production was limited. The worker felt a sense of accomplishment, which lifted morale and motivated the worker to new heights of excellence. Controlling the quality of the product was thus embedded in the philosophy of the worker because pride in workmanship was widespread.

Starting in the early twentieth century and continuing to about 1920, a second phase evolved, called the foreman quality control period (Feigenbaum 1983). With the Industrial Revolution came the concept of mass production, which was based on the principle of specialization of labor. A person was responsible not for production of an entire product but rather for only a portion of it. One drawback of this approach was the decrease in the workers’ sense of accomplishment and pride in their work. However, most tasks were still not very complicated, and workers became skilled at the particular operations that they performed. People who performed similar operations were grouped together. A supervisor who directed that operation now had the task of ensuring that quality was achieved. Foremen or supervisors controlled the quality of the product, and they were also responsible for operations in their span of control.

The period from about 1920 to 1940 saw the next phase in the evolution of quality control. Feigenbaum (1983) calls this the inspection quality control period. Products and processes became more complicated, and production volume increased. As the number of workers