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Preface

Global climate change is bound to create a number of abiotic and biotic stresses in 
the environment, which would affect the overall growth and productivity of plants. 
Like other living beings, plants have the ability to protect themselves by evolving 
various mechanisms against stresses, despite being sessile in nature. They manage 
to withstand extremes of temperature (hot and cold), extremes of water availability 
(drought and flooding), salinity, heavy metals, atmospheric pollution, toxic chemi-
cals (fertilizers, pesticides, herbicides), and a variety of living organisms, especially 
viruses, bacteria, fungi, nematodes, insects, arachnids, weeds, etc. Incidence of abi-
otic stresses may alter the plant–pest interactions by enhancing susceptibility of 
plants to pathogenic organisms. These interactions often change plant response to 
abiotic stresses.

Food security for the rapidly growing human population in a sustainable ecosys-
tem is a major concern of the present-day world. Understanding the core develop-
mental, physiological, and molecular aspects that regulate plant performance in 
terms of growth and productivity under stresses is a pivotal issue to be tackled skill-
fully by the scientific community dealing with sustainable agricultural and horticul-
tural practices. Plant growth regulators modulate plant responses to biotic and 
abiotic stresses and regulate their growth and developmental cascades. Also, inter-
action between biotic and abiotic stresses is controlled by hormone signaling. A 
number of physiological and molecular processes that act together in a complex 
regulatory network, further manage these responses. Crosstalk between autophagy 
and hormones also occurs to develop tolerance in plants towards multiple abiotic 
stresses. Similarly, biostimulants, in combination with correct agronomic practices, 
have shown beneficial effects on plant metabolism due to the hormonal activity that 
stimulates different metabolic pathways. At the same time, they reduce the use of 
agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of 
bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency 
and hence the plant yield under stressful environment. Overall, plant exposure to 
bio-stimulants or hormones reduces damage caused by stress, improves the defense 
mechanisms involved, and also helps in disease management and nutrient- use effi-
ciency. It has also been shown that under a stressful environment, use of bio- and 
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nano-fertilizers determines plant yield and quality, while seed priming agents impart 
stress tolerance. Additionally, tolerance or resistance to stress may also be induced 
by using specific chemical compounds such as polyamines, proline, glycine betaine, 
hydrogen sulfide, silicon, β-aminobutyric acid, and γ-aminobutyric acid.

This book comprises of 22 chapters that cover a wide range of topics, as men-
tioned above, and discusses the trends and advances in plant performance under 
stressful conditions. The vast coverage of diverse aspects of the subject reflects well 
from the table of contents. It must be equally useful for graduate students, teachers, 
researchers, and scientists related to botanical science, crop science, agriculture, 
horticulture, and environmental science.

I express my sincere thanks to the distinguished authors who have shared their 
knowledge and contributed chapters for this book. I feel indebted to Mr. Eric 
Stannard, Senior Editor (Botany) at Springer, and all his associates, for their sus-
tained cooperation. I am also grateful to Professor Muhammad Iqbal (Jamia 
Hamdard, New Delhi, India); Dr. Mansur Osman (University of Gondar, Gondar, 
Ethiopia); Dr. Mohammad Babar Ali (University of Kentucky, Lexington, USA); 
Dr. Sophie Mavrikou (Agricultural University of Athens, Athens, Greece); Dr. 
Adalberto Benavides-Mendoza (Autonomous Agricultural University Antonio 
Narro, Saltillo, Mexico), and Dr. Rakesh Kumar Bachheti (Addis Ababa Science 
and Technology University, Addis Ababa, Ethiopia) for their generous help in 
reviewing various chapters. I shall be happy receiving comments and criticism, if 
any, from subject experts and general readers of this book.

Wolaita, Ethiopia Azamal Husen   
May, 2021

Preface
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1  Introduction

Plants, like other living beings, have the ability to protect themselves by evolving 
numerous mechanisms against abiotic stresses despite being sessile in nature 
(Anjum et al. 2012, 2014; Bechtold and Field 2018; He et al. 2018). They manage 
to withstand harsh environmental conditions such as extreme temperatures (Bita 
and Gerats 2013; Nahar et al. 2015), water scarcity (Husen et al. 2014; Getnet et al. 
2015; Embiale et al. 2016), flooding (Loreti et al. 2016; Zhou et al. 2020), salinity 
(Yousuf et al. 2016a, b; Hussein et al. 2017), heavy metals (Moinuddin et al. 2004; 
Ghori et al. 2019; Ding et al. 2020), ionizing radiation (Esnault et al. 2010; Aref 
et al. 2016; Caplin and Willey 2018), nutrient deficiency (Ahmad et al. 2005; Ganie 
et al. 2016, 2017; Bagheri et al. 2017), atmospheric pollution (Husen 1997; Husen 
et al. 1999; Husen and Iqbal 2004; Iqbal et al. 2000, 2010), chemicals (Bashir et al. 
2007, 2014; Majid et  al. 2013; Bashir and Iqbal 2014), and so on as mentioned 
in Fig. 1.

Fig. 1 Biological and nonbiological stress factors

A. Husen
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Of late, environmental adversities have grown more prominent due to rapidly 
increasing atmospheric pollution and the drastic fluctuations in the global climate 
conditions. For instance, worldwide drought stress may increase due to prolonged 
exposure to high temperature in rainfed areas. This may also induce osmotic stress, 
if water evaporates from soils, leading to elevated salt concentrations. Raftery et al. 
(2017) have suggested an increase of global average temperature from 2.0 to 4.9 °C 
by 2100. Thus, in the near future, combination of high temperature, drought, and 
salt stress may possibly lead to a drastic reduction in plant fitness and their overall 
productivity at the global level. It has also been projected that about 90% of arable 
lands are now prone to single or multiple stress conditions (dos Reis et al. 2012).

Phytohormones such as auxins, gibberellins, cytokinins, ethylene, abscisic acid, 
jasmonates, brassinosteroids, and strigolactones play a significant role in saving 
plants from single or multiple stress conditions, by mediating plant growth and 
development, nutrient allocation and the source and or sink transitions (Peleg and 
Blumwald 2011; Colebrook et al. 2014; Kazan 2015; Husen et al. 2016, 2017, 2018, 
2019; Siddiqi and Husen 2017a, 2019; Podlešáková et al. 2019). In general, they are 
responsible for stress signaling in plants. Further, during the process of plant adap-
tation to stress, cells require to recycle the damaged/unwanted proteins and organ-
elles. In this connection, the term autophagy (i.e., self-eating) evolved. In plant, 
three kinds of autophagy, namely micro-autophagy, macro-autophagy, and mega- 
autophagy, have been reported. In the first case, the cytoplasmic constituents are 
sequestered by the tonoplast invagination, which is then released into the vacuolar 
lumen, producing single-membrane autophagic bodies (Todde et  al. 2009; May 
et al. 2012; Marshall and Vierstra 2018). In macro-autophagy, on the other hand, the 
double-membrane-bound organelles, called phagophores, develop in the cytoplasm 
to engulf cytoplasmic material (Thompson and Vierstra 2005; Bassham et al. 2006), 
and the resulting double-membrane vesicles, autophagosomes, reach the vacuole. 
The outer membrane of autophagosome combines with the tonoplast to release an 
autophagic body into the vacuolar lumen; this autophagic body is degenerated in the 
vacuole to release its content for recycling (Li and Vierstra 2012). Mega-autophagy 
(massive autophagy) is an utmost form of autophagy, the final phase of the develop-
mental programmed cell death (PCD). In plant cells, two main types of PDC are 
noticed. The first one is observed during the normal development and after the abi-
otic stress (developmental PCD), whereas the second one occurs after pathogen 
attack (pathogen-related PCD). The mega-autophagy process begins with the per-
meabilization or rupture of vacuolar membrane, which permits vacuolar hydrolases 
to release into the cytoplasm. These vacuolar hydrolases totally damage the cyto-
plasm, and in several cases also the cell walls, finally leading to cell death (Fukuda 
1996; Marshall and Vierstra 2018; Locato and De Gara 2018; Papini 2018).

Salinity, drought and heat stress, nutrient deficiency, oxidative stress, hypoxia, 
and pathogen attack has been shown to induce autophagy in different cellular set-
tings (Doelling et al. 2002; Xiong et al. 2007; Liu et al. 2009; Zhou et al. 2014; 
Chen et al. 2015; Lai et al. 2011; Luo et al. 2017; Hofius et al. 2017). Autophagy has 
also been noticed to control the growth and development processes in plants (Yang 
et al. 2019). Autophagy-related genes (ATGs) have been shown to be involved in 

Cross Talk Between Autophagy and Hormones for Abiotic Stress Tolerance in Plants
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pollen growth, seed development and germination, leaf senescence, and nitrogen 
use efficiency (Wang et al. 2016; Yu et al. 2019; Zhen et al. 2019; Han et al. 2020; 
Hanamata et al. 2020). Further, the autophagy regulates hormone synthesis and sig-
naling pathways, whereas hormone signaling regulates autophagy gene expression 
also (Liao and Bassham 2020). The significance of autophagy has increased after 
the report of mutagenesis in yeast (Tsukada and Ohsumi 1993; Thumm et al. 1994; 
Harding et al. 1995), and to date, more than 30 ATGs associated with the autophagy 
pathway have been recognized (Yoshimoto 2012; Marshall and Vierstra 2018). 
Recently, Signorelli et  al. (2019) have suggested that the accumulation of 
γ-aminobutyric acid, proline, and polyamines in a stressful environment may indi-
rectly promote autophagy through different pathways and also facilitate the osmotic 
adjustment that coordinates the autophagic process to avoid mega-autophagy. On 
the whole, cross talk between autophagy and hormones under abiotic stress condi-
tions are poorly understood in the plant system. Based on the available information, 
this article discusses the current understanding of autophagy under abiotic stress, 
and hormones coordination/modulation in plant growth and development.

2  Autophagy and Abiotic Stresses

In general, most of the abiotic stresses exhibit some common responses, though 
they are controlled in different ways. For instance, salinity differs from drought 
stress in generating ionic stress in addition to osmotic stress, which leads to mem-
brane disruption and enzyme dysfunction. Salinity, drought, and other stresses 
including nanoparticles exposure lead to an enhanced production of reactive oxygen 
species (ROS) which damage cellular membranes, proteins, and nucleic acids 
(Miller et  al. 2008; Jaspers and Kangasjärvi 2010; Gill and Tuteja 2010; Husen 
2010; Siddiqi and Husen 2016, 2017b; Singh and Husen 2019, 2020). Plant system 
has shown numerous mechanisms to tolerate abiotic stress, for example, regulating 
the growth rate by altering cell wall biosynthesis, protein synthesis, as well as cell 
division (Burssens et al. 2000; Le Gall et al. 2015; Kosová et al. 2018). At the cel-
lular level, overproduction of ROS may harm organelles and biomolecules, affect-
ing their functionality (Umar et al. 2018). An interplay between ROS and autophagy 
is noticed; ROS induce autophagy and autophagy reduces ROS production 
(Signorelli et al. 2019). Further, several genes have been shown to respond under 
abiotic stress condition and get involved in mechanisms of stress tolerance (Zhu 
2001; Haak et al. 2017; Baillo et al. 2019). In this connection, several potential roles 
of autophagy in response to abiotic stress have been unraveled in terms of plant 
resistance. For instance, autophagosome induction was noted under mannitol and 
salinity effects, and Arabidopsis RNAi-ATG18a plants growing under drought, salt, 
or osmotic stress displayed enhanced sensitivity to the stress (Liu et  al. 2009). 
Similarly, Luo et al. (2017) have reported various ATG mutants under salt stress, 
which had higher oxidized proteins in comparison to wild-type plants. Wang et al. 
(2017) have suggested that the overexpression of ATG3 homologs from Malus 

A. Husen
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domestica in Arabidopsis augmented their resistance to salt and osmotic stress. This 
study suggested an anticipated autophagy function under drought stress to control 
quality of protein. In Solanum lycopersicum, silencing heat-shock transcription fac-
tor A1a (HsfA1a) led to a higher insoluble protein accumulation, whereas overex-
pression of HsfA1a decreased the insoluble protein content under drought stress 
(Wang et  al. 2015). This was supported by the observation of reduced insoluble 
protein and less oxidation of soluble proteins in ATG18a overexpressing M. domes-
tica (Sun et al. 2018a) (Fig. 2). In this experiment, Sun et al. (2018a) observed that 
the overexpression of ATG18a from M. domestica in S. lycopersicum as well as in 
M. domestica enhanced their resistance to drought stress in comparison to wild-type 
plants. In another study, Zhu et al. (2018) found that mitochondrial alternative oxi-
dase (AOX) regulates autophagy via mitochondrial ROS under drought stress 

Fig. 2 Identified regulators of autophagy during drought and heat stress in Solanum lycopersicum. 
AOX within mitochondria and the transcription factor ERF5 are induced by drought stress, in a 
process mediated by ethylene. AOX can positively regulate autophagy by balancing the level of 
ROS; lower ROS levels are thought to activate autophagy, whereas higher ROS levels inhibit 
autophagy. ERF5 induces the expression of ATG8d and ATG18h by binding to DRE in their pro-
moters. HsfA1a is also induced by drought stress and activates the expression of ATG10 and 
ATG18f by binding to HSE in their promoters. Under heat stress, the transcription factors 
WRKY33a and WRKY33b activate the expression of ATG5, ATG7, NBR1a, and NBR1b S. lyco-
persicum. Autophagy in turn functions to degrade the protein aggregates induced by drought or 
heat (adopted from Tang and Bassham 2018)

Cross Talk Between Autophagy and Hormones for Abiotic Stress Tolerance in Plants
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conditions in S. lycopersicum plants. AOX limits the ROS formation by preventing 
the over- reduction of the electron transport chain (Selinski et al. 2018). In S. lycop-
ersicum, AOX-overexpressing plants exhibited augmented drought stress tolerance, 
whereas AOX-silenced S. lycopersicum revealed hypersensitivity in comparison to 
wild-type plants, signifying the functions of AOX in terms of drought responses 
(Zhu et al. 2018) (Fig. 2). Also, the AOX transcript and protein were induced by 
application of ethylene (ET) precursor 1-(aminocarbonyl)-1cyclopropanecarbox-
ylic acid (ACC). ACC application conferred higher autophagy activity and better 
drought tolerance to S. lycopersicum plants by either overexpressing or silencing 
the AOX (Zhu et  al. 2018) (Fig.  2). ATGs were transcriptionally controlled by 
drought stress in S. lycopersicum. The transcription factor ethylene response factor 
5 (ERF5), induced by both drought and ACC application, binds to the promoters of 
ATG8d and ATG18h, and inducing their expression (Zhu et al. 2018).

In heat stress also, autophagy plays a significant role in stress alleviation. 
Accumulation of autophagosomes in Arabidopsis and L. esculentum plants growing 
under heat stress has been reported (Zhou et al. 2013, 2014; Yang et al. 2016). In the 
case of Arabidopsis, ATG5 and ATG7 mutants have shown more sensitivity under 
heat stress condition in comparison to wild-type plants, as demonstrated by more 
wilting, higher electrolyte leakage, and decreased rate of photosynthesis. Moreover, 
ATG7 mutant plants exhibited insoluble protein aggregates accumulation, labeled 
by ubiquitin (Zhou et al. 2013). In accordance with this observation, Zhou et al. 
(2014) reported a virus-induced gene silencing of ATG5 and ATG7 in L. esculentum 
plants exposed to heat stress (Zhou et al. 2014). It was suggested that heat stress 
induces autophagy by provoking endoplasmic reticulum stress. Endoplasmic reticu-
lum stress stems from the unfolded proteins accumulation in endoplasmic reticu-
lum, and formation of protein aggregates (Yang et al. 2016). Some of the studies 
have suggested that both micro- and macro-autophagy play a key role in the forma-
tion of anthocyanin vacuolar inclusions under stressful conditions (Masclaux- 
Daubresse et  al. 2014; Chanoca et  al. 2015; Sun et  al. 2018b). ATG mutant 
Arabidopsis plants have also shown decreased accumulation of anthocyanin under 
nitrogen starvation (Masclaux-Daubresse et al. 2014), and ATG18a overexpression 
in M. domestica encouraged accumulation of anthocyanin under nitrogen starvation 
(Sun et al. 2018b). It is suggested that the abiotic stress condition activated ROS 
production (Baxter et al. 2014), and anthocyanin possibly works as an antioxidant 
and mitigates the damage caused by ROS, and thus facilitates stress tolerance. In 
mammalian cells, selective autophagy is mediated by a receptor such as Neighbor 
of BRCA1 (NBR1) (Svenning et al. 2011). In plants, NBR1 homologs have been 
linked to selective autophagy under stress, but it is uncertain how they influence the 
selective autophagy under non-stressed situations (Jung et al. 2020). Svenning et al. 
(2011) reported that NBR1 binds to ubiquitin in Arabidopsis plants, as in the mam-
malian counterpart. In Arabidopsis plants exposed to heat stress condition, NBR1 
expression was upregulated, and GFP-NBR1 puncta gathered in the wild-type 
plants under heat stress, but not in ATG7 mutants; the representative puncta forma-
tion was autophagy-dependent (Zhou et al. 2013). Taken together, it was found that 
the NBR1 mutants were hypersensitive under heat, oxidative, and salt stress 
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conditions in comparison to wild-type plants. Under heat stress, NBR1 mutants 
exhibited ubiquitin-positive, non-soluble protein aggregates accumulation and the 
part of NBR1-bound insoluble proteins was augmented in ATG7 mutants (Zhou 
et al. 2013). Zhou et al. (2014) reported the same in L. esculentum in which NBR1 
was silenced by virus-induced gene silencing. They found that silencing of L. escu-
lentum ATG5, ATG7, or NBR1 compromised heat-induced expression of not only 
the targeted genes but also other autophagy-related genes. In another experiment, 
Sedaghatmehr et al. (2019) identified autophagy as a key negative regulator of ther-
momemory and, hence, tolerance to successive heat stresses in Arabidopsis. The 
authors suggested that autophagy mediates the degradation of specific heat-shock 
proteins (HSPs) at later stages of the thermorecovery phase, leading to protein- 
aggregates accumulation after the second heat stress and facilitates heat tolerance. 
Autophagy mutants retained HSPs longer than wild type and concurrently showed 
better thermomemory. Guillaumot et al. (2009) reported a membrane-spanning pro-
tein (Tryptophan-rich sensory protein/peripheral-type benzodiazepine receptor- 
TSPO/MBR), which expressed under salt/osmotic stress and abscisic acid exposure. 
Vanhee et  al. (2011) reported that TSPO binds free heme and acts as a heme- 
scavenger, and also regulates heme levels in cells. In another study, it was suggested 
that TSPO binds the plasma membrane aquaporin, PLASMA MEMBRANE 
INTRINSIC PROTEIN 2;7 (PIP2;7). Expression of both proteins reduced PIP2;7 
levels and autophagy inhibition stopped this reduction. Thus, Hachez et al. (2014) 
suggested that TSPO controls the uptake of water by the cell during the abiotic 
stress associated with water-deficit conditions. However, TSPO overexpression 
under salinity showed hypersensitivity, though tspo mutants remained unaffected in 
comparison to wild-type plants (Guillaumot et al. 2009). Perhaps, it could be due to 
aquaporins over-degradation and hence damaged regulations of cell water status. 
Further, Nolan et al. (2017) reported that DOMINANT SUPPRESSOR OF KAR 2 
(DSK2—a ubiquitin binding receptor) interacted with ATG8 and BRI1-EMS 
SUPPRESSOR 1 (BES1), a brassinosteroid (BR) pathway regulator. BES1 levels 
decreased under drought stress. Also, the DOMINANT SUPPRESSOR OF KAR 2 
(DSK2)-RNAi Arabidopsis showed enhanced sensitivity under stress, which was 
due to augmented BES1 levels in comparison to wild-type plants. This was also 
reported in ATG7 mutants. This investigation also revealed opposite expression of 
drought-related genes in the DSK2-RNAi plants. It was suggested that by control-
ling BES1 levels via autophagic degradation, DSK2 may downregulate BR signals 
to switch cells from growth to stress mode (Nolan et al. 2017). Thus, this report 
revealed the cross talk among autophagy and hormonal signaling in plants under 
stress conditions.

Thus far, autophagy was considered a phenomenon of promoting plant survival 
under various abiotic stress conditions. Nonetheless, Bárány et  al. (2018) have 
shown that autophagy functions in promoting PCD during microspore embryogen-
esis in Hordeum vulgare. Formation of autophagosome was observed in micro-
spores as well as PCD on exposure to stress (at 4 °C). Further, autophagy inhibitors 
treatment reduced the microspore cell death. These observations have revealed the 
dual role of autophagy under abiotic stress conditions, depending on the type of 
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stress, plant organ, and the developmental phase. Further, a recent investigation has 
shown that BRs act as a positive regulator of NBR1-dependent selective autophagy 
in response to chilling stress in tomato plants (Chi et al. 2020). It was noted that cold 
and BRs induced the stability of BRASSINAZOLE-RESISTANT1 (BZR1), which 
upregulates ATG2, ATG6, NBR1a, and NBR1b expression by binding to their pro-
moters, thus resulting in increased autophagy and increased levels of NBR1 protein. 
The upsurge in autophagy and the selective autophagy receptor NBR1 increased 
photoprotection via greater accumulation of functional proteins (PsbS, VDE, and 
D1) and encouraged the degradation of stress-damaged ubiquitinated protein aggre-
gates, thus leading to increased tolerance to cold (Fig. 3).

Fig. 3 A proposed model for the induction of cold tolerance by BZR1 through the activation of 
autophagy in tomato. Both cold and brassinosteroids can induce the stability of BRASSINAZOLE 
RESISTANT 1 (BZR1), which activates the transcription of the autophagy genes ATG2, ATG6, 
NBR1a, and NBR1b by directly binding to their promoters, subsequently enhancing autophagy. 
The increase in autophagy promotes photoprotection via greater accumulation of functional pro-
teins (PsbS, VDE, and D1) and increases the degradation of stress-damaged insoluble ubiquiti-
nated protein aggregates via the selective autophagy receptor NBR1. Arrows denote positive 
regulation; bar ends denote negative regulation (adopted from Chi et al. 2020)
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3  Hormonal Interaction

The cross talk between phytohormones and autophagy under stress conditions has 
been verified many times, yet the precise molecular mechanism is unknown. 
Abscisic acid (ABA) work as an endogenous messenger under stressful conditions 
(Raghavendra et al. 2010). ABA was known to prevent the activity of plant target of 
rapamycin (TOR), which may facilitate the autophagy induction under stress. 
However, the exact molecular mechanism is still unclear. The role of ABA under 
abiotic stress was revealed to affect the TSPO expression (Guillaumot et al. 2009). 
Further, Honig et  al. (2012) reported that the ATI1/2 knockdown seeds showed 
reduced germination due to ABA exposure, which suggests an interplay between 
ABA and autophagy. Yoshimoto et al. (2014) suggested that the early senescence 
phenotype of ATG mutants was arbitrated by salicylic acid (SA) accumulation, and 
autophagy was revealed to control SA signaling during senescence and also under 
biotic stress. Slavikova et al. (2008) have reported that GFP-ATG8f-HA Arabidopsis 
plants showed a different performance on exposure to cytokinin, in comparison to 
the wild-type plants, as verified by changes in root architecture and the production 
and accumulation of anthocyanin, testifying that autophagy could regulate this pro-
cess. However, no changes were seen between GFP-ATG8f-HA plants and wild- 
type plants under IAA exposure (Slavikova et al. 2008). Auxins function in TOR 
kinase-dependent autophagy induction under specific abiotic stresses (Pu et  al. 
2017). TOR kinase works as a global integrator of metabolic and environmental 
signals to increase or decrease the growth, and one of its important functions is the 
negative autophagy regulation (Liu et al. 2012; Rexin et al. 2015). Autophagy also 
regulates phytohormone synthesis. For instance, Nolan et al. (2017) have shown BR 
signaling regulated by autophagy. They have suggested that selective autophagy 
may be involved in the regulation of phytohormone signaling and biosynthesis, thus 
modulating plant responses under changing/adverse and or abiotic environmental 
conditions.

4  Conclusion

Autophagy, a eukaryotic catabolic mechanism, participates in processes of plant 
growth and development, and responses to numerous biotic and abiotic stresses. It 
is important for the degradation of unnecessary and dysfunctional cellular compo-
nents at some stages of growth/development and under adverse environmental con-
ditions. In recent years, investigation associated with autophagy has been expanded 
from Arabidopsis to other crop plants. So far, many ATGs associated with the 
autophagy pathway have been recognized. A better understanding of increased 
ATGs expression could be beneficial for the agricultural sector. Thus far, the regula-
tory mechanisms of autophagy and the hormonal cross talk under adverse environ-
mental conditions at the molecular level are poorly understood, and deserve further 
in-depth exploration.
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AIT1 (ABA)-importing transporter 1
ALMT1 Aluminum-activated malate transporter 1
APX Ascorbate peroxidase
BAM1-3 Barely any meristem 3
bZIP Basic leucine zipper
CLE Clavata3/embryo-surrounding region-related
CPKs Ca2+-dependent protein kinases
DREB/CBF Dehydration-responsive element binding/core binding factor
DTX Detoxification efflux carriers
E Transpiration rate
ERF Ethylene responsive factor
GPx Glutathione peroxidase
GR Glutathione reductase
gs Stomatal conductance
HAB1 Hypersensitive to ABA1
IRT1 Iron-regulated transporter 1
LCYb Lycopene ß-cyclase
LEA Late embryogenesis abundant
MATE1 Multidrug and toxin extrusion protein 1
MCSU Molybdenum cofactor sulfurase
MDA Malondialdehyde
MEP Methylerythritol phosphate
NCED3 Nine-cis-epoxycarotenoid dioxygenase 3
NPF Nitrate peptide transporter
ORE1 ORESARA1
P5CS Pyrroline-5-carboxylate synthetase
PP2Cs 2C Protein phosphatases
PYR/PYL/RCAR Pyrabactin resistance/pyrabactin resistance-like/regulatory 

component of ABA receptors
RCAR Regulatory component of ABA receptor
ROS Reactive oxygen species
SAG12 Senescence associated gene12
SDR/ABA2 Short-chain alcohol dehydrogenase/reductase
SnRK2s Sucrose nonfermenting 1-related protein kinase type 2
SOD Superoxide dismutase
UFGT UDP-glucose:flavonoid 3-Oglucosyl transferase
WOX5 Wuschel related homeobox5
XDH Xanthine dehydrogenase
ZEP Zeaxanthin epoxidase
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1  Introduction

Climate change impacts have imposed challenges to search tools that allow improv-
ing plant growth, development, and crop yield under abiotic stresses (Wani and 
Kumar 2015; Dar et al. 2017; Sah et al. 2016). Therefore, identifying the mecha-
nisms by which plants respond to the abiotic stresses is one of the critical challenges 
leading to sustainable agriculture, including the development of climate-smart crops 
and resilient to climate change (Ma et al. 2015; Sah et al. 2016; Dar et al. 2017). 
According to several studies, abiotic stresses trigger many physiological, biochemi-
cal, and molecular responses, influencing various cellular processes in plants (Wang 
et al. 2001, 2003; Sah et al. 2016; Dar et al. 2017). To cope abiotic stresses, phyto-
hormones have been proposed as a novel and dynamic engineering approach, which 
could improve the productivity of plants as they are the key regulators of plant 
growth and development, mediating environmental stress responses (Sreenivasulu 
et al. 2012; Sah et al. 2016; Trivedi et al. 2016; Checker et al. 2018). Among phyto-
hormones, abscisic acid (ABA) is the central regulator of abiotic stress resistance in 
plants, coordinating several functions of plants to cope with different stresses 
(Finkelstein 2013; Wani and Kumar 2015; Sah et al. 2016; Dar et al. 2017). In addi-
tion, ABA also plays important roles in the synthesis of biomolecules, embryogen-
esis, stomatal closure, leaf senescence, germination, seed development, and root 
architecture (Zeevaart and Creelman 1988; Trivedi et al. 2016).

Under osmotic stress, ABA stimulates short-term responses as stomatal closure, 
regulating water balance and long-term growth responses, regulating stress- 
responsive genes in plants (Sah et al. 2016; Trivedi et al. 2016; Dar et al. 2017). The 
ABA level significantly increases via ABA biosynthesis under environmental stress 
conditions, changing gene expression and physiological responses (Kim et al. 2010; 
Dar et al. 2017), showing induction in the level of the enzymes associated with ABA 
biosynthesis and relative induction in mRNA leading to ABA accumulation. On the 
other hand, the upregulation of expression levels of several ABA synthesis genes 
like zeaxanthin epoxidase (ZEP), aldehyde oxidase (AAO3), 9-cis-epoxycarotenoid 
dioxygenase (NCED3), and molybdenum cofactor sulfurase (MCSU) have been 
studied under stress conditions, which can be expressed either through an ABA- 
dependent or ABA-independent pathway (Dar et al. 2017). The major transcription 
factor families such as bZIP, MYB, MYC, NAC, ERF, and DREB/CBF further con-
trol their regulation (Verma et al. 2016). Thus, the role of ABA in stress response 
has been extensively studied and reviewed (Hashiguchi and Komatsu 2016; Sah 
et al. 2016; Verma et al. 2016; Dar et al. 2017); therefore, the chapter attempts to 
underline the biosynthesis, signaling, and transport of ABA and its role in different 
physiological, biochemical, and molecular responses of plants under adverse envi-
ronmental conditions.
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