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Preface

The main target of this monograph is to provide the detailed investigations to
the newly established special functions involving the Mittag-Leffler, Wiman, Prab-
hakar, Miller—Ross, Rabotnov, Lorenzo—Hartley, Sonine, Wright, and Kohlrausch—
Williams—Watts functions, Gauss hypergeometric series, and Clausen hypergeomet-
ric series. The integral transform operators based on the theory of the Wright and
Kohlrausch—Williams—Watts functions may be used to solve the complex problems
with power-law behaviors in the light of nature complexity. The topics are important
and interesting for scientists and engineers to represent the complex phenomena
arising in mathematical physics, engineering, and other applied sciences.

The monograph is divided into seven chapters, which are discussed as follows.

Chapter 1 introduces the special functions such as Euler gamma function,
Pochhammer symbols, Euler beta function, extended Euler gamma function,
extended Euler beta function, Gauss hypergeometric series, and Clausen
hypergeometric series as well as calculus operators with respect to monotone
function containing the power-law calculus, scaling-law calculus, and complex
topology calculus as well as calculus operators with respect to logarithmic and
exponential functions.

Chapter 2 investigates the Wright function, Wright’s generalized hypergeometric
function, supertrigonometric and superhyperbolic functions via Wright function,
and Wright’s generalized hypergeometric function. The integral representations for
the supertrigonometric and superhyperbolic functions are addressed in detail. Some
integral transforms via Dunkl transform based on the calculus with respect to power-
law function are proposed.

Chapter 3 provides the theory of the Mittag-Leffler function, supertrigono-
metric functions, and superhyperbolic functions. The integral representations for
the Mittag-Leffler function and related functions are addressed, and the general
fractional calculus operators are also discussed in detail. The truncated Mittag-
Leffler, supertrigonometric, and superhyperbolic functions are considered, and some
mathematical models are considered to explain the power-law behaviors in material
science.
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Chapter 4 shows the theory of the Wiman function, supertrigonometric functions,
and superhyperbolic functions. The integral representations for the Wiman function
and related functions are addressed, and the general fractional calculus operators are
also discussed in detail. The truncated Wiman, supertrigonometric, and superhyper-
bolic functions are considered, and the integral equations as well as mathematical
models related to Wiman function are also presented in detail.

Chapter 5 addresses the theory of Prabhakar function and proposes the super-
trigonometric and superhyperbolic functions via Prabhakar function. The Laplace
transforms for the new special functions and integral representations for the super-
trigonometric and superhyperbolic functions are discussed in detail. The truncated
Prabhakar, supertrigonometric, and superhyperbolic functions are proposed, and
the general fractional calculus involving the Prabhakar function is considered. The
integral equations and mathematical models related to Prabhakar function are also
presented.

Chapter 6 presents the Sonine functions, Rabotnov fractional exponential func-
tion, Miller—Ross function, and Lorenzo—Hartley functions. The Laplace and Mellin
transforms of them are given, and the integral representations for the supertrigono-
metric and superhyperbolic functions are also presented in detail. The formulas
related to the Mittag-Leffler functions and Wright hypergeometric functions are also
considered.

Chapter 7 illustrates the Kohlrausch—Williams—Watts function and integral repre-
sentations. The subtrigonometric functions, subhyperbolic functions, supertrigono-
metric functions, and superhyperbolic functions are discussed in detail. Moreover,
the Fourier-type series, Fourier-type integral transforms, Laplace-type integral
transforms, and Mellin-type integral transforms are also proposed.

Xuzhou, China Xiao-Jun Yang
August 20, 2020
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Chapter 1 )
Preliminaries Check for

Abstract In this chapter, we investigate the special functions and operator calculus.
At first, the Euler gamma function, Pochhammer symbols, Euler beta function,
extended Euler gamma function, and extended Euler beta function are introduced.
Then, the Gauss hypergeometric series, Clausen hypergeometric series, super-
trigonometric and superhyperbolic functions, and Laplace and Mellin transforms
are presented. Finally, the calculus operators with respect to monotone function
are discussed and the mathematical models in applied sciences are also reported
in detail.

1.1 The Euler Gamma Function, Pochhammer Symbols,
Euler Beta Function, and Related Functions

In this section, we present the Euler gamma function, Pochhammer symbols, Euler
beta function, extended Euler gamma function, and extended Euler beta function.

1.1.1 The Euler Gamma Function

In this part, we introduce the Euler gamma function.

Let C, R, Z, N be the sets of the complex numbers, real numbers, integrals, and
natural numbers, respectively.

Let Z*, Ry, Z~, and R_ be the sets of the positive integrals, positive real
numbers, and negative integral numbers, and negative real numbers.

LetZy =7~ UO0and No = NUO.

Let Re (x) denote the real part of x if x € C.
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2 1 Preliminaries

Definition 1.1 (Euler [1]) The gamma function due to Euler is defined as

e ¢]

I'(z) = /e"tz_ldt, (1.1)

0

where Re (z) > Oand z € C.
The formula was discovered by Euler in 1729 (see [1], p.1), and the notation
I'" (z) was introduced by Legendre in 1814 (see [2], p.476).

Theorem 1.1 (Weierstrassian Product [3]) If z € C\Z;, with Z; =:
n
{0, —1,-2,---}and y := lim (Z ]i —log n) is the Euler constant, the Gamma

Sfunction was given as [3]

re= e_;z ]"[((1+li)1ei). (1.2)

k=1
Moreover, I' (z) is analytic except at the points z € Z, where it has simple
poles [4].

The formula for the Weierstrassian product was discovered by Weierstrass in 1856
[3] and by Newman in 1848 [5], respectively, and the proofs were published by
Holder [6], Moore [7], and Baines [8].

Definition 1.2 (Euler [1]) Let Re (z) > 0 and z € C. Then the Euler’s functional
equation states

F'z+1)=zI(2). (1.3)

The result is the Euler’s functional equation discovered by Euler in 1729 [9] and
reported by Weierstrass [3], Brunel [10], Gronwall [11], and Olver [12].

Theorem 1.2 (Euler [1]) Ifz € Ny, then we have
F'iz+1)=z. (1.4)

The result is the Euler’s functional equation discovered by Euler in 1729 [1, 2] and
discussed by Weierstrass [4], Brunel [10], and Gronwall [11].

Theorem 1.3 (Euler [1])

r(;) _ Jr. (1.5)

This work was discovered by Euler in 1729 [11] and discussed in Bell [13], Luke
[14], and Bendersky [15].
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Theorem 1.4 (Euler) Ifn, j € N, then we have

- 1—j n-l 1

[1r =©27) 2 n. (1.6)
j=1 "

The result was reviewed by Gronwall in 1916 [11].

Theorem 1.5 (Winckler [16]) Ifz € Cand g, k, j, k,I,m,n € N, then we have

n—1
hj
j];[ol"(hz~|— n) h hgz_’_hgfzh—g hee
- (g) Q) 2", (1.7)

The result was discovered by Winckler in 1856 [16] and reviewed by Gronwall in
1916 [11].

Theorem 1.6 (Schlomilch [17] and Newman [5]) If z € C and k € N, then we
have

1 ad Z _z
o =eVZz]£[1 (1 n k)e i (1.8)

The result was discovered by Schldémilch in 1844 [17] and by Newman [18].
Theorem 1.7 (Whittaker [19]) If Re (z) > 0, z € C, and k € N, then we have

i I
—kt,z—1 5, _ <
/e £ = P (1.9)
0

The result was first reported by Whittaker in 1902 (see [19], p.184) and further
reported by Whittaker and Watson in 1920 [20].

Theorem 1.8 (Whittaker [19]) Ifa, 8 € C, Re («) > 0, and Re (B) > 0, then we
have

[SE

r(%)r (%
cos® ' tsinf 1 tdr = ! (2) (2) (1.10)
2 F (C{'HS)
0 2

The result was first defined by Whittaker in 1902 (see [19], p.191) and further
reported by Whittaker and Watson in 1920 [20].
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Theorem 1.9 (Titchmarsh [21]) If o, 8 € C, Re(a) > 0, Re(B) > 0, and
Re (o + B) > 1, then we have

o]

1 pa+p—1
/ dt = . (1.11)
Fa+t)yI'(B—1) Fa+p-1)

—00

The result was first reported in the Titchmarsh’s monograph [21].

Theorem 1.10 (Titchmarsh [21]) If Re(@) > —1, Re(B) > -1, and
Re (o + B) > —1, then we have

o]

fl_[ k(a+p+k) _F(O{+1)F(ﬂ+1).
k=1

= (1.12)
Ltk B+ Fa+p+1)

The result was first presented in the Titchmarsh’s monograph [21].

Theorem 1.11 (Titchmarsh [21]) Ifz € C and k, n € N, then we have
n z " k=1 1 -
_ -
(- 0)=(-Tr(a) - any
k=1 k=1

The result was first reported in the Titchmarsh’s monograph [21].

Theorem 1.12 (Euler [22]) Let z € C and Re (z) > 0. Then we have the Euler’s
completion formula as follows:

rE@ra-z= Sinfm) (1.14)

and

n 2
sin(nz)znzﬂ(l—;) (1.15)
k=1

The result is the Euler’s completion formula due to Euler [22].
For more details of the results, readers refer to Weierstrass [4], Manocha and
Srivastava [23], Luke [14], Bell [13], Godefroy [24] and Tannery [25].

Theorem 1.13 (Legendre [2], p.485)
The Legendre duplication formula states

1 2z—1 1
F(22)F<2> =2 F(z)F(z—i-z), (1.16)

where z € C\Z,.
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The Legendre’s duplication formula was first discovered by Legendre in 1809 (see
[2], p.477). For more details of the Legendre duplication formula, readers refer to
Gronwall [11], Andrews et al. [26], and Manocha and Srivastava [23].

Theorem 1.14 (Gauss [27]) Ifz € C\ {0, —,{1} with j < m and j,m € N, then

we have
1—m 1 " j—1
rmzg)=@m) " m™ 2]+ : (1.17)
j=1 "

The result is the Gauss’ multiplication formula due to Gauss [27]. For more details
of the Gauss’ multiplication formula, readers refer to Winckler [28], Gronwall [11],
Manocha and Srivastava [23], and Andrews et al. [26].

Theorem 1.15 (Weierstrass [3]) Ifz € C/Z, then we have

(=) ()

=msec(mwz) (1.18)
_ T
— cos(z)

2

 eimz +e—i7zz °

The result was discovered by Weierstrass [4] and reported by Bell in 1968 [13] and
by Luke in 1969 [14].

Theorem 1.16 I (é + iz) r (; - iz) = coshinz) = preynzs (19)
‘F(l —i—iz) o (1.19)
2 ez + e T2
and
ra)r-ig= _ " i (1.20)

—izsin(wzi)  z(emF — e’

where |z| — o0.

The results were reported by different researchers, for example, Lerch [29],
Godefroy [30], Stieltjes [31], Bateman [32], and Andrews et al. [26].

Theorem 1.17
n—1 . . -1
2 n
F<J)F(1—J):(n) , (1.21)
1 n n n

~
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1y 2w
r (—n + 2) (=" n— DI’ (1.22)
1\ _ @n-DlW/x
r (n + 2) = on , (1.23)
s n—1 Z2
Fra+aln—2= ((n—l)!)zl"[r<1— ) (124)
sin (77z7) i J
and
| Loy () :
F<n+2+Z>F<n+2—Z)= cos (72) l:[ ( (21_1)2>
(1.25)

wheren € Nand z € C\Z .

The results were reported by Weierstrass in 1856 [4].
Let us introduce the Temme function which is related to the ratio of two gamma
functions [35].

Definition 1.3 The Temme function is defined as

r
Ir'(z) = (Z)l , (1.26)
V2 2e 2
where z € C and Re (z) > 0.
The result was defined by in Temme’s book (see [35], p.66).
Theorem 1.18 Letz,a,b € C, Re(z) > 0, Re(z +a) > 0, and Re (z + b) > 0.
Then the ratio of two gamma functions is shown as follows:

FG@+a) . ,T*@+a)

F(Z+b) =z = (Z+b)Q(Z’a’b)’ (127)

where

a—l 1
0ah) - <1 . a) 2 (1 N b)2 bez[ln<1+fj)f‘;71n(1+lz’)+?]‘ (1.28)
Z Z

The result was discovered by Temme in the book (see [35], p.67).
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In an alternative manner, we have (see [35], p.67)

1
Feta 1 /t““*l(l—t)b*“*ldt, (1.29)
F'G+b) I'(b-a)
0

where a, b,z € Cand Re (b — a) > 0.

The result was reported by Temme in the book (see [35], p.67).

Here, we introduce the interested formula reported in the book (see [35], p.72)
as follows:

Theorem 1.19 Leta,b,z € C, Re(a) > 0, Re (b) > 0, and Re (z) > 0.
Then we have

o0

7—1 —at? _1 < -z
ft e dt_bF< )a P (1.30)
0

The result was reported by Temme (see [35], p.72).
There are some special cases of (1.29) as follows:

o0
/tz_le_mdt =a"T (2), (1.31)
0
o0
b 1
edr=r(,+1). (1.32)
0
r 1
fe*“f”dt =, (2){2, (1.33)
0
T 1
/e*‘”zdt =T (;)cfg, (1.34)
0
v 1
/Fle*‘”zdt =T (;)cfg, (1.35)
0

o

1
fﬂ*le*’zdt = F(Z) (1.36)
0



and

T 1

/tzfle*’bdt =T (Z)
b b

0

where a, b,z € C, Re (a) > 0, Re (b) > 0, and Re (z) > O.
There are useful formulas as follows [35]:

1 @)/
F<”+2): 22npy

n!

1 _ n 2n
F(—n+2)—(—1) 2 an’

r ! r +1 = o 1¢Z
2 )\ ) T cosrzy t T 2 B
1 . o1 T
r —xi )| I {xi+ = ,
(2 ) ( 2) cosh (rx)

o0

T
/ #Vsintdt = I () sin ;
0

and
o0
T
/tz_lcostdt = I" (z) cos 2Z,
0

wherez € C, Re(z) > 0,n € Nand x > 0.
Making use of (1.30) and takinga =i = /—1, we have

o0
/ﬁ*le*"’dz =i (2),
0

00 ) 00
[t tem"dt = [ 1371 (cost — i sint) dt
0 0

[e¢)
t“~lcostdt —i [ t*'sintdt
0

o3
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(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)



1.1 The Euler Gamma Function, Pochhammer Symbols, Euler Beta Function,. .. 9

and

ir () =e 3 T (2)

1.46
= (cos J —sin ) I' (z), (1.46)

where (i6)* = || e’mmgm ,z € Cand Re (z) > 0, such that we obtain (1.42) and

(1.43).

1.1.2 The Pochhammer Symbols and Related Formulas

We now introduce the Pochhammer symbols and related theorems.

Definition 1.4 (Pochhammer [34])
The Pochhammer symbol is defined as [34]

k
(@) = 1_[1(064-”—1)

= eto (1.47)
_{1(k=0)
S a@+ 1D (@4+k—1) (k € Ny)

and
(a)g =1, (1.48)

where € Cand k,n € N.

The Pochhammer symbol was first suggested by Pochhammer in 1870 [34].
The notation was first used by Pochhammer in 1870 [34] and Weierstrass noticed
in 1856 that [4]

Fla+k)y=a@+1---(a+k—1)TI (x) (ke Np). (1.49)

For more information, readers may refer to the monograph [33].
Moreover, there is (see[4, 11, 36])

1

r@’ (1.50)

Ii =
Jim, @

where @ € C\C; and k € N.
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Suppose that « = —n and n € Ny, then there is (see [36], p.3)

(@) = { (=mi.n =k (1.51)
—.n <k.
Theorem 1.20 (Euler [1]) Ifz € C\Z, then we have
nZ
I' (z) = lim . (1.52)
n—00 (Z)n+l

The result was discovered by Euler in 1729 [9], reported by Weierstrass in 1856 [3],
and discussed by Gronwall in 1916 [11].

Theorem 1.21 There exist

(@) (@ + k), = ()44 (1.53)
and
()
(¢ + k) = , (1.54)
(@i

where o € C\Z, andn,k € N.

The first formula of the results was reported by Rainville in 1960 (see [37], p.59)
and the second formula was suggested by Slater in 1966 (see [36], p.31).
There are some useful formulas as follows:

(—2p=CED"z—n+ Dy, (1.55)
_ A2n Z Z 1
(22, =2 (2)n<2+2>n, (1.56)
1
(2)apyr = 221! (;) n+l (; + 2) n (1.57)

where z € Candn € N.

Theorem 1.22 Let j, k,m,n € No, k < n and a, B € C\Z, then we have

(1), = nl, (1.58)
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(Ol ) _ a(a=1)--(a—k—1)
- n!
n

_ T(a+1)
- n!F(loz—n+1)

n!(a+1),
(=D"(~a),
n! ’
T(a+1)
= (_1)n (_a)n s
I'a—n+1)
1 (=D (=m),

(m—n)! m!

Fe—-n) (="
re  (-w,

I (¢ —n) (=D*
r = (Ol),n = s
(o) (I —a),
n! n! _(n+ 1!

3

@ps1 @+ Dypt (@pgo

(a)n _ (a)n+1= (a)n _
B B B &P

@ = (=D _ D@,
T ), A —a—n) (I—a—n)’
(—=Dk (D), (—=Dfn!
Dy =(n—k)!' = == ,
( )n k (n ) (_n)k (_n)k
a1
(a)mn =m"" ( ) ’

and

TV
(—n), = ((nlf)k;l!!’ O<k<n) .
0, (k > n)

11

(1.59)

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)

For more details of the results, readers refer to the works [3, 11, 13, 14, 23, 36].
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Theorem 1.23 (Stirling [38])

1
—a

)
— k
- kgo (@k+1

_ io: re@ Itk
= & @) Ttk

(1.70)

_ 1 o a(a+1) R
=% ey ey oo

where Re (o) > 0, Re (z) > 0, Re (@ — z) > Oand a, z € C\Z .

The result was discovered by Stirling in 1730 [38] and reviewed by Gronwall in
1916 [11].

Theorem 1.24 Let hV (1) > 0,h (0) = a, h (1) = b, x € C and Re (x) > 0.
Then we have

b
F@ = [e ™ n @)y h® (1)dr. (1.71)

The result was discovered by Yang et al. in 2020 when x € N [39].

1.1.3 The Euler Beta Function

In this section, we investigate the concept and theorems of the Euler beta function.

Definition 1.5 (Euler [22])
The Euler beta function is defined as

1
_r@r® _ f a1, .p-1
B@h =1 —O/I (1 —nfLar, (1.72)

where Re (@) > 0, Re (8) > 0,and a, B € C\Z, .

The formula (called the Euler integral of the second kind) was first discovered by
Euler in 1772 [22] and by Legendre in 1811 (see [40], p.211), and the name of
the beta function was introduced for the first time by Binet in 1839 [41]. For more
details, see the monograph [33].

It is clear that

Babh= ., (1.73)



