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Preface

Recently, complex networked systems, such as distributed robots and mobile sensor
networks, have been widely studied due to their broad applications. One of the
focuses of studying complex networked systems is on how collective behavior
emerges as a result of local interactions among agents.

Most of the literatures concerning collective behavior of complex networks
concentrate on the analysis of network models with perfect communication, which
assumed that each agent can receive information from its neighbors timely and
accurately. Unfortunately, such models cannot reflect the most real circumstances,
as the information flow between two neighboring nodes is generally affected by
many uncertain factors including limited communication capacity, network-induced
time delays, communication noise, random packet loss, and so on. Moreover, in
many realistic complex networked systems, due to the complexity of systems and
external attacks (or disturbance), the failure inevitably occurs in nodes or links.
Therefore, the aforementioned communication constraints should be considered
in the design of control strategies or algorithms. In this book, we investigate the
collective behavior of complex networked systems under imperfect communication.
The following issues will be presented in detail: (a) the consensus of continuous-
time multi-agent networks with communication delays; (b) the consensus of
continuous-time multi-agent networks with quantization and time delays; (c) the
consensus of discrete-time multi-agent networks with quantization and time delays;
(d) the distributed event-triggered control approach for consensus of discrete-
time/continuous-time multi-agent networks; (e) the bipartite consensus problem of
cooperative-antagonistic multi-agent networks with communication delays; (f) the
synchronization problem of general dynamical networks with time delays; (g) the
consensus recovery approach to nonlinear multi-agent system under node failure.

This book aims to introduce some recent research work on the collective
behavior of complex networked systems under imperfect communication. The book
is organized as follows:

Chapter 1: This chapter begins with the background of complex networked
systems. Subsequently, the organization of this book, some important definitions,
useful lemmas, and some basic knowledge about graph theory are introduced.

v
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Chapter 2: The consensus problem of networks is investigated under the con-
straint of directed information flow and arbitrary finite communication delays. It is
shown that the consensus can be realized whatever the finite communication delays
are. Furthermore, one well-informed leader is proved to be enough for the regulation
of final states for all nodes, even if the external signal is very weak.

Chapter 3: The consensus problem of continuous-time multi-agent networks with
quantization and communication delays is investigated. Two types of communi-
cation constraints are discussed in this chapter: (i) each agent can only exchange
quantized data with its neighbors, and (ii) each agent can only obtain the delayed
information from its neighbors. Solutions of the resulting system are defined in
the Filippov sense. By nonsmooth analysis technique, the existence of the global
Filippov solution to the resulting system is proved. For the consensus protocol which
only considers the quantization effect, we prove that Filippov solutions converge to
a practical consensus set in a finite time. For the consensus protocol considering
quantization and time delays simultaneously, it is shown that Filippov solutions
will converge to a practical consensus set asymptotically. In addition, based on
the nonsmooth analysis, convergence results are derived for the proposed model
with uniform quantizers. It is pointed out that the multi-agent network will achieve
consensus asymptotically under the proposed distributed protocols.

Chapter 4: The consensus problem of multi-agent networks with communica-
tion quantization and time delays is investigated. Both discrete-time model and
continuous-time model are considered. For the discrete-time model, we present that
the multi-agent network with communication quantization and arbitrary communi-
cation delays can achieve consensus. For the continuous-time model, we show that
the global Filippov solution exists and the consensus can be achieved under com-
munication quantization and communication delays simultaneously. Furthermore,
a new distributed event-triggered scheme is proposed for the considered multi-
agent network model. It is shown that the multi-agent network achieves consensus
asymptotically under the proposed distributed event-triggered protocols.

Chapter 5: The consensus problem of discrete-time multi-agent networks under
event-triggered control strategy is considered. We discuss networks of single-
integrator without delays under centralized event-triggered control and single-
integrator with communication delays under distributed event-triggered control,
respectively. For each consensus protocol, we prove that the multi-agent network
will achieve consensus asymptotically. In addition, the effect of communication
delays for the discrete-time event-triggered multi-agent consensus is also discussed.
Furthermore, a self-triggered consensus algorithm is proposed in which a set of
iterative procedures is given to compute the event-triggered instants. Significantly,
the final consensus value is theoretically obtained even in the presence of event-
based communication and distinct finite delays.

Chapter 6: The consensus problem for multi-agent networks with antagonistic
interactions and communication delays is investigated. For undirected signed
networks, we establish two dynamic models corresponding to linear and nonlinear
coupling, respectively. Based on matrix theory, Lyapunov stability theory, and some
other mathematical analysis, it is proved that all agents on signed networks can reach
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an agreement on consensus values which are the same in modulus but opposite in
sign. Further, a bipartite consensus solution is given for linear coupling networks,
and an explicit expression associating with bipartite consensus solution is provided
for nonlinear coupling networks.

Chapter 7: The fixed-time consensus problem for multi-agent systems with
structurally balanced signed graph is studied. A new class of fixed-time nonlinear
consensus protocols is designed by employing the neighbors’ information. By using
the Lyapunov stability method, states of all agents can be guaranteed to reach
agreement in a fixed time under our presented protocols, and the consensus values
are the same in modulus but different in sign. Moreover, it is shown that the settling
time is independent of the initial conditions, and it provides great convenience for
estimating the convergence time by just knowing the graph topology and the infor-
mation flow of the multi-agent systems. In addition, finite-time bipartite consensus
problem of multi-agent systems with detail-balanced antagonistic interactions is
investigated. To be specific, two valid protocols are designed and expressed in a
unified form. Further, by taking advantage of some recent findings on network
stability, we obtain theoretical results to guarantee that the states of all agents reach
agreement in finite time under our proposed protocols.

Chapter 8: The globally exponential synchronization problem is considered for
general dynamical networks. One quantity is extracted from the coupling matrix to
characterize the synchronizability of the corresponding dynamical networks. The
calculation of such a quantity is very convenient even for large-scale networks. The
network topology is assumed to be directed and weakly connected, which implies
that the coupling configuration matrix can be asymmetric, weighted, and reducible.
By using the Lyapunov functional method and the Kronecker product technique,
some criteria are obtained to guarantee the globally exponential synchronization of
general dynamical networks.

Chapter 9: Under event-based mechanism, pinning cluster synchronization in
an array of coupled neural networks is studied. A new event-triggered sampled-
data transmission strategy, where only local and event-triggering states are utilized
to update the broadcasting state of each agent, is proposed to realize cluster syn-
chronization of the coupled neural networks. Furthermore, a self-triggered pinning
cluster synchronization algorithm is proposed, and a set of iterative procedures
is given to compute the event-triggered time instants. Hence, this will reduce the
computational load significantly.

Chapter 10: The consensus recovery approach under node failure is studied.
First, consensus analysis is given for nonlinear multi-agent networks with arbitrary
communication topology, which fully utilizes the global information of the network
structure. Before presenting the consensus recovery approach, a new network
reduction approach is proposed to reduce the size of the networks. Subsequently,
a consensus recovery approach is proposed to investigate the consensus of general
nonlinear multi-agent networks with node failure. The objective of the consensus
recovery is to remove the failure nodes of the networks meanwhile the consensus
property is reserved.
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Chapter 1
Introduction

1.1 Background

With the rapid development of modern technology, the world has entered the age
of networks. Typical examples of networks include the World Wide Web, routes of
airlines, biological networks, human relationships, and so on [1]. As a special kind
of network, complex networked systems consisting of large groups of cooperating
agents have made a significant impact on a broad range of applications including
cooperative control of autonomous underwater vehicles (AUVs) [2], scheduling
of automated highway systems [3], and congestion control in communication
networks [4].

The study of complex networks can be traced back to Euler’s celebrated solution
of the Königsberg bridge problem in 1735, which is often regarded as the first
true proof in the theory of networks. In the early 1960s, a random-graph model
was proposed by Paul Erdös and Alfréd Rényi [5], which laid a solid foundation
for modern network theory. Watts and Strogatz proposed a model of small-world
networks in 1998 [6], after that Albert and Barabasi proposed a model of scale-
free networks in 1999 based on preferential attachment [7]. These two works
reveal small-world effect and scale-free property of the complex networks and the
reasons for the above phenomena. Over the past two decades, complex dynamical
networks have been widely exploited by researchers in various fields of physics [8],
mathematics [9], engineering [10, 11], biology [12], and sociology [13].

What makes complex networked systems distinct from other kinds of systems
is that they make it possible to deploy a large number of subsystems as a team to
cooperatively carry out a prescribed task. Furthermore, the most striking feature that
can be observed in complex networked systems is their ability to show collective
behavior that cannot be well explained in terms of individual dynamics of each
single node. Two significant kinds of cooperative behaviors are synchronization and
consensus [9, 14–18], both of which mean that all agents reach an agreement on
certain quantities of interest.

© Springer Nature Singapore Pte Ltd. and Science Press, China 2021
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The formal study of consensus dates back to 1974 [19], where a mathematical
model was presented to describe how the group reaches agreement. Another
interesting discovery is the collective behavior of a group of birds exhibited in
foraging or flight, which is found by biologists in the observation of birds’ flocking
[20]. If attention is paid, one can find that consensus is a universal phenomenon
in nature, such as the shoaling behavior of fish [21], the synchronous flashing of
fireflies [22], the swarming behavior of insects [20, 23, 24], and herd behavior of
land animals [25]. The key feature of consensus is how local communications and
cooperations among agents, i.e., consensus protocols (or consensus algorithms),
can lead to certain desirable global behavior [26–29]. Various models have been
proposed to study the mechanism of multi-agent consensus problem [30–37]. In
[38], the consensus problem was considered of a switched multi-agent system which
composed of continuous-time and discrete-time subsystems. The authors in [39]
investigated consensus problems of a class of second-order continuous-time multi-
agent systems with time-delay and jointly-connected topologies. Literature [40]
focused on the mean square practical leader-following consensus of second-order
nonlinear multi-agent systems with noises and unmodeled dynamics.

Synchronization, as typical collective behavior and basic motion in nature, means
that the difference among the states of any two different subsystems goes to
zero as time goes to infinity or time goes to certain fixed value. Synchronization
phenomena exist widely and can be found in different forms in nature and man-
made systems, such as fireflies’ synchronous flashing, attitude alignment, and the
synchronized applause of audiences. To reveal the mechanism of synchronization
of complex dynamical networks, a vast volume of work on synchronization has
been done over the past few years. Before the appearance of small-world [6]
and scale-free [7] network models, Wu in [41, 42] investigated synchronization
of an array of linearly coupled systems and gave some effective synchronization
criteria. In 1998, Pecora and Carroll [43] proposed the concept of master stability
function as synchronization criterion, which revealed that synchronization highly
depends on the coupling strategy or the topology of the network. In [14, 44–46],
synchronization in small-world and scale-free networks was studied in detail. Over
the past few years, different kinds of synchronization have been found and studied,
such as complete synchronization [14, 41, 42, 47, 48], cluster synchronization [49–
52], phase synchronization [53], lag synchronization [54, 55], and generalized
synchronization [56].

In the literatures, most works on the consensus/synchronization of complex net-
works mainly focus on the analysis of network models with perfect communication,
in which it is assumed that each agent can receive timely and accurate information
from its neighbors. However, such models cannot reflect real circumstances, since
the information flow between two neighboring nodes can always be affected
by many uncertain factors including limited communication capacity, network
induced time delays, communication noise, random packet loss, and so on. The
aforementioned constraints should be considered in the design of control strategy or
algorithms. Hence, it is desirable to formulate more realistic models to describe such
complex dynamical networks under imperfect communication constraints and node
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failure. In this book, three kinds of specific imperfect communications and node fail-
ure will be investigated, and some detailed analysis of consensus/synchronization of
complex dynamical networks will be presented.

1.2 Research Problems

The following three kinds of imperfect communication problems are considered in
this book:

• Quantization: In real-world networked systems, the amount of information that
can be reliably transmitted over the communication channels is always bounded.
To comply with such a communication constraint, the signals in real-world
systems are required to be quantized before transmission, and the number of
quantization levels is closely related to the information transmitting capacity
between the components of the system. For example, information such as data
and codes in computers is stored digitally in the form of a finite number of bits
and hence all the signals need to be quantized before they are processed by the
computer. In this book, two kinds of quantizations in networks are considered.
One is called communication quantization which is related to communication
from one agent to another. The other is called input quantization which is related
to processing of the information arriving at each own agent. One natural question
is how does the state of a networked systems evolve under quantization?

• Communication delays: In many real complex networked systems, due to the
remote location of agents or the unreliable communication medium (such as
Internet), communication delays will occur during the information exchange
between the agents and their neighbors. Generally, communication delays can
have a negative effect on the stability and consensus/synchronization perfor-
mance of the complex networks. Thus, it is important to investigate the effect
of time delays on the coordinate performance of the complex networked systems
and design the delay-tolerant communication protocol. Moreover, it would be
very interesting to study the collective behavior of the complex networked
systems simultaneously with communication delays and quantization.

• Event-driven sampled data: In complex networked systems, it is assumed that
all information exchange between the agent and its neighbors is timely. However,
the communication channels generally are unreliable and the communication
capacity is limited in many real networks such as sensor networks. Moreover,
the sensing ability of each agent is restricted in the networked systems. Thus, it
is more practical to use sampled information transmission, i.e., the nodes of the
network can only use the information at some particular time instants instead of
employing the whole spectrum of information of their neighbors. Sampled-data
control has been widely studied in many areas such as tracking problems and
consensus problems. Unlike traditional time-driven sampled control approach
(i.e., periodic sampling), event-triggered control means the control signals are
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kept constant until a certain condition is violated and then the control signal
is updated (or recomputed). Event-driven control is more similar to the way
in which a human being behaves as a controller since his or her behavior is
event-driven rather than time-driven when control manually. Thus, an interesting
question arises, i.e., is it possible to propose an effective distributed event-
triggered communication protocol to realize expected collective behaviors?

Traditional distributed communication protocols require that the agents exchange
perfect information with their neighbors over the complex networked systems. This
kind of information exchange can be an implicit property of complex networked
systems. The objective of this book is to design efficient distributed protocols or
algorithms for the complex networked systems with imperfect communication and
node failure in order to comply with bandwidth limitation and tolerate communi-
cation delays and node failure. Specifically, the following problems concerning the
collective behavior analysis of complex networked systems will be addressed and
investigated in detail:

Problem 1. How does one model the multi-agent networks with arbitrary finite
communication delays and directed information flow simultaneously
[57]? Can consensus be realized no matter what kind of form the finite
communication delays are? How to regulate all nodes’ final state of
the multi-agent networks, even when the external signal is very weak?
These three questions will be addressed in Chap. 2.

Problem 2. How can we model the multi-agent consensus model with input
quantization and communication delays simultaneously [58, 59]? Does
there exist the global solution for the considered consensus model
with discontinuous quantization function? How do quantization and
communication delays affect the final consensus result? These three
questions will be addressed in Chap. 3.

Problem 3. When the communication quantization and communication delays
exist simultaneously in discrete-time multi-agent networks, can
the complex networked system achieve consensus [60, 61]? For
the continuous-time cases, does the global solution exist? Can the
consensus of such a kind of multi-agent network be realized? These
questions will be explored in Chap. 4.

Problem 4. Can the discrete-time and the continuous-time multi-agent networks
with communication delays achieve consensus via non-periodic sam-
pled information transmission [62, 63]? How to decide when should
the information be transmitted for each agent? What effect does the
communication delay have on the multi-agent networks with non-
periodic sampling information? Chap. 5 will focus on these problems.

Problem 5. It can be found in many real multi-agent networks that the agents
possess not only cooperative but also antagonistic interactions. Ensur-
ing the desired performance of the cooperative-antagonistic multi-
agent networks in the presence of communication constraints is an
important task in many applications of real systems. How does one
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model the cooperative-antagonistic multi-agent networks with arbi-
trary finite communication delays [64–66]? How to deal with the diffi-
culty stemmed from communication delays in cooperative-antagonistic
multi-agent networks? What are the final consensus results for this kind
of networks with communication delays? How to design the consensus
protocol for cooperative-antagonistic multi-agent networks under the
event-triggered control? Chap. 6 will focus on these problems.

Problem 6. Finite-time (or fixed-time) consensus problem has become a hot topic
due to its wide applications. For the cooperative-antagonistic multi-
agent networks, how to design finite-time (or fixed-time) bipartite
consensus protocols [67, 68]? How to establish criteria to guarantee
the bipartite agreement of all agents, and show the explicit expression
of the settling time? Chap. 7 will focus on these problems.

Problem 7. It should be pointed out that many of the real-world networks are
very large. A nature question is how to obtain synchronization criteria
for large-scale directed dynamical networks? When energy constraint
is imposed, how to design event-triggered sampled-data transmis-
sion strategy to realize expected synchronization behaviors [69, 70]?
Chaps. 8 and 9 will discuss these synchronization problems.

Problem 8. The size of most real-world networks is very large, which would
greatly increase the complexity and difficulty of the consensus analysis
of the corresponding networks. Is it possible to greatly reduce the size
of the networks, but reserve the consensus property [71]? In large-scale
networks, is it possible to isolate (or remove) the failure nodes of the
networks and meanwhile reserve the consensus property? Chap. 10
will focus on these problems.

1.2.1 Consensus and Practical Consensus

Consider a multi-agent network A with N agents. Let xi ∈ R be the information
state of the ith agent which may be position, velocity, decision variable, and so on,
where i ∈ N .

Definition 1.1 (Consensus) If for all xi(0) ∈ R, i = 1, 2, . . . , N , xi(t) converges
to some common equilibrium point x∗ (dependent on the initial values of some
agents), as t → +∞, then we say that multi-agent network A solves a consensus
problem asymptotically. The common value x∗ is called the group decision value.

Now, we give the definition of the distance from a point to a set and practical
consensus which will be used in Chap. 3.
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Definition 1.2 The distance from a point p ∈ R to a set U ⊆ R is defined as the
minimum distance between the given point and the points on the set, i.e.,

dist (p,U) = min
r∈U{dist (p, r)} = min

r∈U{|p − r|}.

Definition 1.3 If for all xi(0) ∈ R, i ∈ N , the distance of xi(t) to a set U ⊆ R

converges to 0 as t → +∞. Then, the set U is called practical consensus set.

1.2.2 General Model Description

In this subsection, a brief introduction of the multi-agent consensus model [32] is
presented, which requires that each agent receives timely and accurate information
from its neighbors.

1.2.2.1 Continuous-time Multi-agent Consensus Model

The continuous-time multi-agent consensus model is as follows:

ẋi (t) =
∑

j∈Ni

aij (xj (t)− xi(t)), i ∈ N , (1.1)

where xi(t) ∈ R
n, N = {1, 2, . . . , N}, N > 1, Ni = {j | aij > 0, j =

1, 2, . . . , N}, and aij is defined as follows:

• when i is not equal to j :

If there is a connection from node j to node i, aij > 0;
otherwise, aij = 0;

• when i is equal to j : aii = 0, for all i ∈ N .

Let lij = −aij for i �= j , and lii = −∑N
j=1,j �=i lij . The continuous-time linear

consensus protocol (1.1) can be written in matrix form as

ẋ(t) = −(L⊗ In)x(t), (1.2)

where L = (lij )N×N is the graph Laplacian matrix and x = [x�
1 , . . . , x

�
N ]�.



1.3 Mathematical Preliminaries 7

1.2.2.2 Discrete-time Multi-agent Consensus Model

A general discrete-time multi-agent consensus model can be constructed as follows:

xi(k + 1) = xi(k)+ ι
∑

j∈Ni

āij (xj (k)− xi(k)), i ∈ N , (1.3)

where xi(k) ∈ R
n, the constant ι > 0 denotes the step size; āij is defined as

follows:

• when j is not equal to i:

If there is a connection from node j to node i, āij > 0;
otherwise, āij = 0;

• when i is equal to j : āii = 0, for all i ∈ N .

Ā = (āij )N×N represents the topological structure of the system. Let A =
(aij )N×N with aij = ιāij ≥ 0 for i �= j , and aii = 1 −

N∑

j=1, j �=i
aij . Then, the

dynamic of multi-agent networks can be written in a compact form as

x(k + 1) = (A⊗ In)x(k). (1.4)

Proposition 1.4 ([72]) System (1.4) solves a consensus problem if and only if

(1) ρ(A) = 1, where ρ(A) is the spectral radius of A;
(2) 1 is an algebraically simple eigenvalue of A, and is the unique eigenvalue of

maximum modulus;
(3) A1 = 1, where 1 = (1, 1, . . . , 1)� ∈ R

N ;
(4) There exists a nonnegative left eigenvector ξ = (ξ1, ξ2, . . . , ξN)

� ∈ R
N of A

associated with eigenvalue 1 such that ξ�1 = 1.

1.3 Mathematical Preliminaries

1.3.1 Matrices and Graphs

A graph is an essential tool of the diagrammatical representation of the multi-agent
networks. The set of vertices for the network are described as V , and the set of
edges among these vertices are described as E . The graph is denoted as G(V, E). To
distinguish graphs from digraphs (directed graph), we generally refer to graphs as
undirected graphs.

A graph G(V, E), where V containing N vertices is said to have order N .
Analogously, the size of a graph is the number of its edges m, i.e., the number
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of elements in set E . An edge of G is denoted by eij = (vi, vj ), where vi and vj are
called neighbors.

• Self-loop: If two vertices of an edge are the same, we call this edge a self-loop.
• Directed graph: A graph in which all the edges are directed from one vertex to

another.
• Digraph: A path in a digraph is an ordered sequence of vertices such that the

sequence of any two consecutive vertices is a directed edge of the digraph.
• Connected graph: A graph is connected, if there is a path between any pair of

vertices.
• Strongly connected graph: A graph is strongly connected, if there is a directed

path between every two different vertices.
• Subgraph: A subgraph of a graph G1(V1, E1) is a graph G2(V2, E2) such that

V2 ⊆ V1, E2 ⊆ E1.
• Directed tree: A directed tree is a digraph with n vertices and n − 1 edges with

a root vertex such that there is a directed path from the root vertex to every other
vertex.

• Rooted spanning tree: A rooted spanning tree of a graph is a subgraph which is
a directed tree with the same vertex set.

In general, graphs are weighted, i.e., a positive weight is associated to each edge.
There is an intrinsic relationship between graph theory and matrix theory, which

can help us to better understand the main concept of them.

• Reducible: A matrix is said to be reducible if it can be written as

P ·
(
A1 A3

O A2

)
·Q, (1.5)

where P and Q are permutation matrices, A1 and A2 are square matrices and O
is a null matrix.

• Irreducible: An irreducible matrix is a matrix which is not reducible.
• Adjacency matrix: The adjacency matrix A = [aij ] of a (di)graph is a

nonnegative matrix defined as aji = ω if and only if (i, j) is an edge with
weight ω.

• Out-degree: The out-degree do(v) of a vertex v is the sum of the weights of edges
emanating from v.

• In-degree: The in-degree di(v) of a vertex v is the sum of the weights of edges
into v.

• Balance graph: A vertex is balanced if its out-degree is equal to its in-degree. A
graph is balanced if all of its vertices are balanced.

• Laplacian matrix: The Laplacian matrix of a graph is a zero row sums nonnega-
tive matrix L denoted as L = D − A, where A is the adjacency matrix and D is
the diagonal matrix of vertex in-degrees.
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Lemma 1.5 ([73]) A network is strongly connected if and only if its Laplacian
matrix is irreducible.

Lemma 1.6 ([73]) For an irreducible matrix A = (aij )N×N with nonnegative
off-diagonal elements, which satisfies the diffusive coupling condition aii =
−∑N

j=1,j �=i aij , we have the following propositions:

• If λ is an eigenvalue of A and λ �= 0, then Re(λ) < 0;
• A has an eigenvalue 0 with multiplicity 1 and the right eigenvector

[1, 1, . . . , 1]�;
• Suppose that ξ = [ξ1, ξ2, . . . , ξN ]� ∈ R

N satisfying
∑N

i=1 ξi = 1 is the
normalized left eigenvector of A corresponding to eigenvalue 0. Then, ξi > 0
for all i = 1, 2, . . . , N . Furthermore, if A is symmetric, then we have ξi = 1

N
for

i = 1, 2, . . . , N .

1.3.2 Signed Graphs

LetG(V, ε,A) be an undirected signed graph, where V = {ν1, ν2, . . . , νN } is the set
of finite nodes, ε ⊆ V × V is the set of edges, A = [aij ] ∈ R

N×N is the adjacency
matrix of G with the elements aij , and aij �= 0 ⇐⇒ (νj , νi) ∈ ε. Since aij can
be positive or negative, the adjacency matrix A uniquely corresponds to a signed
graph. G(A) is used to denote the signed graph corresponding to A for simplicity,
and assume that G(A) has no self-loops, i.e., aii = 0.

• Path: Let a path of G(A) be a sequence of edges in ε of the form: (νil , νil+1) ∈ ε

for l = 1, 2, . . . , j − 1, where νi1 , νi2 , . . . , νij are distinct vertices.
• Connected: We say that an undirected graph G(A) is connected when any two

vertices of G(A) can be connected through paths.
• Structurally Balanced: A signed graph G(A) is structurally balanced if it admits

a bipartition of the nodes V1, V2, V1 ∪ V2 = V , V1 ∩ V2 = ∅, such that aij ≥ 0,
∀νi, νj ∈ Vq, (q ∈ {1, 2}); and aij ≤ 0, ∀νi ∈ Vq , νj ∈ Vr , q �= r , (q, r ∈
{1, 2}). It is said structurally unbalanced otherwise.

Definition 1.7 D = {diag(σ ) | σ = [σ1, σ2, . . . , σN ], σi ∈ {±1}} is a set of
diagonal matrices, where

diag(σ ) =

⎡

⎢⎢⎢⎣

σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σN

⎤

⎥⎥⎥⎦ .

In the sequel, we consider {σi, i = 1, 2, . . . , N} as defined in Definition 1.7
for a structurally balanced signed graph. By following [74], the Laplacian matrix
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L = (lij )N×N for a signed graph G(A) is defined with elements given in the form
of

lij =

⎧
⎪⎪⎨

⎪⎪⎩

N∑

k=1

|aik|, j = i,

− aij , j �= i.

Lemma 1.8 ([74]) A connected signed graph G(A) is structurally balanced if and
only if one of the following equivalent conditions holds:

(1) all cycles of G(A) are positive;
(2) ∃D ∈ D such that DAD has all nonnegative entries.

Remark 1.9 This lemma can be proved in a special way. The adjacency matrix A

can be rewritten as A =
[
A+

11 A
−
12

A−
12 A

+
22

]
, then let D =

[
I 0
0 −I

]
, we have DAD ≥ 0.

This proof is simple and explicit.

Lemma 1.10 ([74]) A connected signed graph G(A) is structurally unbalanced if
and only if one of the following equivalent conditions holds:

(1) one or more cycles of G(A) are negative;
(2) � ∃D ∈ D such that DAD has all nonnegative entries.

Lemma 1.11 ([74]) Consider a connected signed graph G(A). Let λk(L), k =
1, 2, . . . , N be the k-th smallest eigenvalue of the Laplacian matrix L. If G(A)
is structurally balanced, then 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN(L).

Lemma 1.12 ([75]) If a directed signed graph G contains a rooted spanning tree,
then there exists a proper invertible matrix P satisfying PP� = I such that the
Laplacian matrix L can be depicted in the following Frobenius normal form:

P�LP =

⎡

⎢⎢⎢⎣

L11 0 · · · 0
L21 L22 · · · 0
...

...
. . .

...

Lp1 Lp2 · · · Lpp

⎤

⎥⎥⎥⎦ , (1.6)

where Lii , i = 1, 2, . . . , p, are irreducible matrices, and for any 1 < k ≤ p, there
exists at least one q < k such that Lkq is nonzero.

1.3.3 Quantizer

A quantizer is a device which converts a real-valued signal into a piecewise constant
one taking on a finite or countable infinite set of values, i.e., a piecewise constant
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Fig. 1.1 The first kind of
uniform quantizer
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function q : R → Q, where Q is a finite or countable infinite subset of R (see
[76, 77]). Next, we introduce two kinds of uniform quantizers which will be used in
Chaps. 2 and 3, respectively.

The first kind of uniform quantizer is defined as (see Fig. 1.1)

q(x) =
⌊
x + 1

2

⌋
, (1.7)

where �·� denote the lower integer function.
The second kind of uniform quantizer is defined as (see Fig. 1.2)

q(x) =
{ �x�, x ≥ 0,

−�−x�, x < 0.
(1.8)

In this book, we will use the one-parameter family of quantizers qμ(x) :=
μq( x

μ
), μ > 0.

Fig. 1.2 The second kind of
uniform quantizer
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1.3.4 Discontinuous Differential Equations

For differential equations with discontinuous right hand sides, we understand the
solutions in terms of differential inclusions following Filippov [78].

Definition 1.13 Let I be an interval in the real line R. A function f : I ⊆ R → R is
absolutely continuous on I if for every positive number ε, there is a positive number
δ such that whenever a finite sequence of pairwise disjoint sub-intervals (xk, yk) of
I satisfies

∑

k

|yk − xk| < δ, then

∑

k

|f (yk)− f (xk)| < ε. (1.9)

Moreover, we call the function f̄ = (f1, f2, . . . , fn) : I ⊆ R → R
n is absolutely

continuous on I if every fi, i = 1, . . . , n is absolutely continuous.

Now we introduce the concept of Filippov solution. Consider the following
system:

dx(t)

dt
= f (x(t)), (1.10)

where x ∈ R
n, f : R

n → R
n is Lebesgue measurable and locally essentially

bounded.

Definition 1.14 A set-valued map is defined as

K(f (x)) =
⋂

δ>0

⋂

μ(N)=0

c̄o[f (B(x, δ) \N)], (1.11)

where c̄o(Ω) is the closure of the convex hull of setΩ ,B(x, δ) = {y : ‖y−x‖ ≤ δ},
and μ(N) is Lebesgue measure of set N .

Definition 1.15 ([78]) A solution in the sense of Filippov of the Cauchy problem
for Eq. (1.10) with initial condition x(0) = x0 is an absolutely continuous function
x(t), t ∈ [0, T ], which satisfies x(0) = x0 and differential inclusion:

dx

dt
∈ K(f (x)), a.e. t ∈ [0, T ], (1.12)

where K(f (x)) = (K[f1(x)], . . . ,K[fn(x)]).
A property of Filippov differential inclusion K is presented in the following

lemma:

Lemma 1.16 ([79]) Assume that f, g : R
m → R

n are locally bounded. Then,

K(f + g)(x) ⊆ K(f )(x)+ K(g)(x). (1.13)
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Let h : R
n → R be a locally Lipschitz function and Sh be the set of points where

h fails to be differentiable. Then,

• Clarke generalized gradient [80]: Clarke generalized gradient of h at x ∈ R
n is

the set ∂ch(x) = co{ lim
i→+∞ ∇h(x(i)) : x(i) → x, x(i) ∈ R

n, x(i) �∈ S ∪ Sh},
where co(Ω) denotes the convex hull of set Ω and S can be any set of zero
measure.

• Maximal solution [80]: A Filippov solution to (1.10) is a maximal solution if it
cannot be extended further in time.

Definition 1.17 ([81]) (Ω,A) is a measurable space and X is a complete separable
metric space. Consider a set-valued map F : Ω � X. A measurable map f : Ω �→
X satisfying

∀ω ∈ Ω, f (ω) ∈ F(ω) (1.14)

is called a measurable selection of F .

Lemma 1.18 ([81] Measurable Selection) Let X be a complete separable metric
space, (Ω,A) a measurable space, and F a measurable set-valued map from Ω to
closed nonempty subsets of X. Then there exists a measurable selection of F .

Lemma 1.19 ([82] Chain Rule) If V : R
n → R is a locally Lipschitz function and

ψ : R → R
n is absolutely continuous, then for almost everywhere (a.e.) t there

exists p0 ∈ ∂cV (ψ(t)) such that d
dt
V (ψ(t)) = p0 · ψ̇(t).

1.3.5 Some Lemmas

Lemma 1.20 ([83] Jensen Inequality) Assume that the vector function
ω : [0, r] −→ R

m is well defined for the following integrations. For any symmetric
matrixW ∈ R

m×m and scalar r > 0, one has

r

∫ r

0
ω�(s)Wω(s)ds ≥

(∫ r

0
ω(s)ds

)�
W

(∫ r

0
ω(s)ds

)
.

Lemma 1.21 ([84]) Consider the differential equation

ẋ(t) = f (t, xt ).

Suppose that f is continuous and f : R × C → R
n takes R×(bounded sets of

C) into bounded sets of Rn, and u, v, w: R+ → R
+ are continuous and strictly

monotonically non-decreasing functions, u(s), v(s), w(s) are positive for s > 0
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with u(0) = v(0) = 0. If there exists a continuous functional V : R × C → R such
that

u(‖x(t)‖) ≤ V (t, x(t)) ≤ v(‖x(t)‖),
V̇ (t, x(t)) ≤ −w(‖x(t)‖),

where V̇ is the derivative of V along the solution of the above delayed differential
equation, then the solution x = 0 of this equation is uniformly asymptotically stable.

Lemma 1.22 ([85]) Let x(t) be a solution to

ẋ = g(x), (1.15)

where x(0) = x0 ∈ R
N , and letΩ be a bounded closed set. Suppose that there exists

a continuous differentiable positive definite function V (x) such that the derivative

of V (t) along the trajectories of system (1.15) satisfies
dV

dt
≤ 0. Let E = {x|dV

dt
=

0, x ∈ Ω} and M ⊂ E be the biggest invariant set, then one has x(t) → M as
t → +∞.

Lemma 1.23 ([86]) If A = (aij ) ∈ R
N×N is an irreducible matrix satisfying aij =

aji ≥ 0, if i �= j , and
∑N

j=1 aij = 0, for i = 1, 2, . . . , N . For any ε > 0, all
eigenvalues of the matrix

A =

⎛

⎜⎜⎜⎝

a11 − ε a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN

⎞

⎟⎟⎟⎠ (1.16)

are negative.
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