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Foreword

The book Soybean Seed Composition: Protein, Oil, Fatty Acids, Amino Acids, 
Sugars, Mineral Nutrients, Tocopherols, and Isoflavone is a timely update for those 
interested in seed composition and the healthful effects of phytochemicals. Protein, 
oil, and Isoflavone can improve human and animal health and also behavior.

Chapter 1 covers seed protein, oil, fatty acids, and amino acids and the effects of 
genetic and environmental factors on them. Chapter 2 covers QTL that control seed 
protein, oil, and fatty acids contents, and Chap. 3 covers seed amino acids, macro-
nutrients, micronutrients, sugars, and other compounds that are key to selection for 
crop improvement. Chapter 4 covers two decades of QTL mapping of mineral defi-
ciencies in soybean, which sheds light on the importance of a balanced mineral 
nutrition in soybean and other crops. Chapter 5 covers 16 years of salt stress toler-
ance QTL mapping, which is another, challenge that faces soybean and other crop 
production worldwide. Chapters 6, 7, 8, 9, and 10 cover in great detail the important 
soybean seed Isoflavone from their biosynthesis and quantification methods, loca-
tions, and variations in seeds, roots, leaves to their QTL mapping for over two 
decades, and Chap. 11 covers lunasin, a bioactive anticancer peptide in soybean 
seeds, which will help farmers and breeders to develop soybean cultivars with 
improved seed Isoflavone and lunasin contents.

The book makes a great primer for those new to the field, including undergradu-
ate and graduate students, and also serves as a great assistance to the alleged experts. 
It should help direct policy and funding agencies alike.

Carbondale, IL, USA� Khalid Meksem
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Preface

Soybean [Glycine max (L.) Merr.] seeds are a great source of Isoflavone (mainly 
daidzein, genistein, and glycitein), protein, oil, fatty and amino acids, nutrients, and 
many other beneficial compounds for human and animal consumption.

The idea of writing this book started when I wrote what was intended to be a 
review paper entitled “Isoflavone Quantitative Trait Loci (QTL) Mapping” back in 
fall 2014. In this review paper, I decided to cover soybean seed Isoflavone QTL 
mapping for over one and a half decade and the paper was getting too large; there-
fore, I changed my mind to add a few chapters on soybean seed Isoflavone such as 
“Isoflavone Biosynthetic Pathways and Methods of Quantification,” “Isoflavone 
Locations and Variations in Seeds, Roots, Leaves, and Other Plant Parts,” “Isoflavone 
Positive and Negative Effects on Humans, Animals, and Plants,” and “Environmental 
Factors Affecting Isoflavone Contents” and make it a book about seed Isoflavone 
only. However, with the passage of time, I decided to expand the book and change 
its title to “Soybean Seed Composition: Protein, Oil, Fatty Acids, Amino Acids, 
Sugars, Mineral Nutrients, Tocopherols, and Isoflavone,” added the chapters “Seed 
Protein, Oil, Fatty Acids, and Amino Acids: Effect of Genetic and Environmental 
Factors,” “QTL That Control Seed Protein, Oil, and Fatty Acids Contents,” “Seed 
Amino Acids, Macronutrients, Micronutrients, Sugars, and Other Compounds,” 
“Two Decades of QTL Mapping of Mineral Deficiencies in Soybean,” “Sixteen 
Years (2004–2020) of Salt Stress Tolerance QTL Mapping in Soybean,” and 
“Bioactive Anticancer Peptides in Soybean Seeds,” and decided to cover literature 
up to December 2020 and end the book by this date.

I hope that this book will add to the knowledge of soybean seed composition, 
especially Isoflavone, their biosynthesis, effects on humans and animal health and 
food, and their genetic mapping but also protein, oil, fatty acids, amino acids, min-
eral nutrients and other compounds and that it will benefit undergraduate and gradu-
ate students, faculty, scientists, and other individuals interested in these subjects.

Fayetteville, NC, USA� Moulay Abdelmajid Kassem   
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Chapter 1
Seed Protein, Oil, Fatty Acids, and Amino 
Acids: Effects of Genetic 
and Environmental Factors

Nacer Bellaloui and Moulay Abdelmajid Kassem

1.1  �Introduction

Soybean is a major crop in the world and a source of high-quality protein, oil, and 
other nutrients. Soybean seed nutrients (seed composition constituents) include pro-
tein (40–45%), oil (18–24%) (Medic et al. 2014), and fatty acids such as palmitic 
(C16:0, 8–12%), stearic (C18:0, 3–5%), oleic (C18:1, 18–24%), linoleic (C18:2, 
48–58%), and linolenic (C18:3, 5–10%) acids. Soybean seed fatty acids biosyn-
thetic pathway is shown in Fig. 1.1 (Fang et al. 2017). Soybean seed contains high-
quality protein for human nutrition and livestock meal. Also, it contains amino 
acids, isoflavones, and minerals. Health benefit to human has been previously 
reported by various studies (Hu et al. 1997; Maestri et al. 1998; Federal Register 
2003; Fehr 2007; Business Sphere 2007; Clemente and Cahoon 2009). Breeders 
goal for desirable seed composition constituents include high oleic and low linole-
nic acids, low phytic acid, high sucrose, and low raffinose and stachyose levels. It 
has been shown that soybeans with higher levels of mono-unsaturated fatty acids 
such as oleic acid or lower levels of polyunsaturated fatty acids such as linoleic or 
linolenic are more desirable for human consumption than saturated fatty acids such 
as palmitic and stearic acids (Haun et al. 2014). However, higher levels of monoun-
saturated fatty acids such as oleic acid and low levels of polyunsaturated fatty acids 
such as linoleic and linolenic acid are desirable by the industry as they contribute to 
oil oxidative stability, short shelf life, and less rancidity. This trait is desirable 
because it can minimize hydrogenation of the oil. Hydrogenation has been reported 
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to have undesirable health effects by increasing the risk of coronary heart disease 
due to higher LDL-cholesterol and lower HDL-cholesterol (Federal Register 2003; 
Business Sphere 2007; Clemente and Cahoon 2009). The partial hydrogenation of 
polyunsaturated fatty acids such as linolenic acid results in the conversion of linole-
nic acid to oleic and stearic acids, thereby reducing polyunsaturated fatty acids to 
about 18% and linolenic acid to below 2% (Gerde et al. 2007; Clemente and Cahoon 
2009; Haun et al. 2014).

Therefore, the main goal of breeders is to breed soybean with low linolenic acid 
and high oleic acid so as to reduce the hydrogenation process, thereby minimizing 
the level of trans-fatty acids in foods. In 2015, the Food and Drug Administration 
determined that partially hydrogenated oils (PHOs) are not generally recognized as 
safe (GRAS). This determination was based on research and input from stakehold-
ers during the public comment. The PHOs are considered the primary dietary source 
of artificial transfat in processed foods. Removing PHOs from processed foods 
could prevent thousands of heart attacks and deaths each year (US Food and Drug 
Administration 2018: https://www.fda.gov/food/food-additives-petitions/final-
determination-regarding-partially-hydrogenated-oils-removing-trans-fat) “GRAS: 
is an acronym for the phrase Generally Recognized As Safe. Under sections 201(s) 
and 409 of the Federal Food, Drug, and Cosmetic Act (the Act), any substance that 
is intentionally added to food is a food additive, that is subject to premarket review 
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and approval by FDA, unless the substance is generally recognized, among quali-
fied experts, as having been adequately shown to be safe under the conditions of its 
intended use, or unless the use of the substance is otherwise excepted from the defi-
nition of a food additive” (US Food and Drug Administration 2019: https://www.
fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras)

Also, higher raffinose and stachyose are not desirable as these sugar fractions are 
indigestible and cause flatulence or diarrhea in human and monogastric animals 
such as swine and chicken (Liu 1997; Obendorf et al. 1998). High phytic acid is 
another antinutritional component in soybean. Phytic acid is the major storage form 
of phosphorous in soybean, known as a food inhibitor. Phytic acid chelates micro-
nutrient such as Fe and Zn and prevents phosphorus from absorption and bioavail-
ability for monogastric animals, including humans. This occurs due to lack of 
enzyme phytase in their digestive tract. Therefore, genetic improvement of soybean 
with low phytic acid is still among the goals of soybean breeders. Phytic acid pre-
treatment method such as enzymatic treatment of soybean seed with phytase enzyme 
is a regular method used in industries (Gupta et al. 2015). This chapter will focus on 
reviewing soybean seed protein, oil, and fatty acids and highlight the main research 
conducted on improving soybean seed nutritional traits from the perspectives of 
genetic, environmental, and agricultural practices.

1.2  �Interactions of Seed Composition Constituents 
with Genetics and Environmental Factors

Protein, oil, and fatty acids (oleic, linoleic, linolenic, stearic, and palmitic acids) are 
among the top compounds available in soybean seeds, consumed by humans, and 
highly desirable traits to improve in breeding programs (Yazdi-Samadi et al. 1977; 
Burton 1987; Blackman et al. 1992). Their contents vary depending on the geno-
type, abiotic and biotic stresses, and environmental conditions (Table 1.1) (Badami 
et al. 1984; Hartwig and Kilen 1991; Bellaloui et al. 2014a; Rincker et al. 2014; 
Gulluoglu et al. 2018; Wijewardana et al. 2019).

Several studies have reported that crop rotation affects seed yield and seed com-
position including protein, oil, fatty acids, and nutrient contents (Temperly and 
Borges 2006; Bellaloui et al. 2010b). It was shown that soybean seed protein con-
tent decreased from 357 g kg−1 to 351 g kg−1 from the 1st to 5th year of soybean 
consecutive growth after five years of corn consecutive growth (Temperly and 
Borges 2006).

It is well known that elevated temperatures and CO2 levels affect plant growth 
and development including seed composition (Thomas et al. 2003; Long et al. 2004; 
Prasad et al. 2005; Hay and Porter 2006; Taub et al. 2008; Bellaloui et al. 2016). In 
another study, authors investigated the effects of increased temperatures (28  °C, 
32 °C, 36 °C, 40 °C, 44 °C) and CO2 levels (350, 700 μmol mol−1) on seed composi-
tion. They found that seed oil, linolenic acid, and carbohydrates contents decreased 
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when temperatures increased, and seed oleic acid, N, and P contents increased when 
temperatures increased. However, CO2 increase had a minimal effect on seed com-
position (Thomas et al. 2003). On the other hand, other researchers have predicted 
that the changes in seed yield and composition were due to global climate changes 
including high CO2, affecting stomatal conductance and photosynthetic rates (Long 
et al. 2004; Prasad et al. 2005; Hay and Porter 2006; Taub et al. 2008). A recent 
research on the effect of high temperatures [26 °C and 45 °C] and CO2 [360 and 
700 μmol mol−1] on seed composition showed that seed protein, linolenic acid, and 
mineral nutrient (P, K, N, Fe, Zn, and B) contents decreased and seed oil and oleic 
acid contents increased with the increase of temperatures and CO2 levels. They also 
found that seed fructose, glucose, and sucrose contents increased with increased 
temperature and CO2 levels; however, seed raffinose and stachyose contents did not 
change (Bellaloui et al. 2016).

The effects of soybean–corn crop rotation on seed composition in Stoneville, 
MS, USA (Bellaloui et al. 2010c) were also studied. They showed that three-year 
rotation increased the level of fatty acids content from 61% to 68%, P content from 
60% to 75%, Fe content from 70% to 71%, B content from 34% to 69%, and oleic 
acid content from 22.63% to 30.22%; however, a decrease in linoleic acid content 
was noticed (Bellaloui et al. 2010c).

Several studies showed the effect of row spacing and seeding rate (SDR) on soy-
bean seed yield and composition (Al-Tawaha and Seguin 2006; Ragin et al. 2014; 

Table 1.1  Soybean seed protein, oil, and fatty acids (oleic, linoleic, linolenic, stearic, and palmitic 
acids) contents

Trait Content (seed dry weight basis or %) Reference

Protein 36.3–41.9%
41%
380–420 g kg−1

35.16–37.35%

Badami et al. (1984)
Hartwig and Kilen (1991)
Bellaloui et al. (2014a)
Bolon et al. (2014)

Oil 15.6–25.8%
21%
190–230 g kg−1

15.29–17.43%

Badami et al. (1984)
Hartwig and Kilen (1991)
Bellaloui et al. (2014a)
Bolon et al. (2014)

Saturated fatty acids 8.6–16.7% Badami et al. (1984)
Stearic acid 2.2–7.2%

-
4%

Badami et al. (1984)
Bellaloui et al. (2014a)
Hartwig and Kilen (1991)

Palmitic acid 120–130 g kg−1

10%
Bellaloui et al. (2014a)
Hartwig and Kilen (1991)

Unsaturated fatty acids 83.3–91.4% Badami et al. (1984)
Oleic acid 22%

30–40 g kg−1

Hartwig and Kilen (1991)
Bellaloui et al. (2014a)

Linoleic acid 54%
480–580 g kg−1

Hartwig and Kilen (1991)
Bellaloui et al. (2014a)

Linolenic acid 10%
50–80 g kg−1

Hartwig and Kilen (1991)
Bellaloui et al. (2014a)
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Bellaloui et al. 2014a; Bellaloui et al. 2020). The effect of row spacing (RS) and 
seeding rate (SDR) on seed composition was investigated in four soybean cultivars 
(P 93M90, AG 3906, P 94B73, and V 52N3) over two years (2006–2007) in a field 
in Stoneville, MS (Bellaloui et al. 2014a). The results showed that SDR, cultivar, 
and year significantly affected seed Fe, P, B, sucrose, protein, and oil contents, but 
no stachyose and linolenic acid contents were observed. Similarly, RS significantly 
affected Fe, B, raffinose, and sucrose contents, but no protein and oil contents were 
recorded (Bellaloui et al. 2014a).

In an experiment, Gulluoglu et al. (2018) investigated the effects of two cropping 
systems (main and double cropping systems) on seed composition traits (fatty acids 
and oil contents) in several soybean varieties adapted to Europe (Turkey). The tem-
peratures ranged from 19.5 °C to 28.6 °C and from 19.5 °C to 28.6 °C during the 
growing seasons. They found that soybean plants grown in the main cropping sys-
tem showed an increase in seed oil contents from 18.45% to 19.99%, while those 
grown in the double cropping system from 17.11% to 19.37%. They also found that 
a positive correlation between high temperatures and high seed oil content was 
observed, in agreement with those reported by others (Belalloui et al. 2015a, b). 
Fatty acids such as oleic, linoleic, and linolenic acids were also affected in the fol-
lowing ways. The content of seed palmitic acid in double cropping system ranged 
from 10.76% to 12.23% – higher than its range of 10.59% to 12.04% in the main 
cropping system. The content of seed stearic acid in double cropping system ranged 
from 3.94% to 4.87% – higher than its range of 3.11% to 4.52% in the main crop-
ping system. Similarly, for seed oleic acid, the content ranged from 22.69% to 
29.51% – lower than its range of 27.02% to 34.09% in the main cropping system; 
For seed linoleic acid, the content ranged from 48.40% to 54.14% of total oil in 
double cropping system – higher than its range of 44.5% to 51.80% in the main 
cropping system. Similar pattern was also observed for seed linolenic acid content 
that ranged from 5.41% to 6.62% in double cropping system – higher than its range 
of 4.44% to 5.61% in the main cropping system (Gulluoglu et al. 2018).

The accumulation levels of protein, oil, and fatty acids in seeds are genetically 
controlled, although environmental conditions and agricultural practices can signifi-
cantly alter the levels of these seed constituents in seeds. For example, Dardanelli 
et al. (2006) investigated the effects of maturity group (MG) and environment (E) 
on protein and oil in a 3-year experiment using six maturity groups (IIIII, IV, V, VI, 
VII, and VIII-IX) and in 14–24 environments each year. They found that the envi-
ronment was the most important source of variation for protein and oil content, and 
the main effect of MG was higher than that of MG × E interaction for oil content and 
oil + protein content. They also found that oil content was higher in seeds from MGs 
II-III and IV. Protein content was higher in MG VI in some environments, whereas 
it was higher in MG II-III in some other environments. The high temperatures dur-
ing seed-fill period could cause consistent higher oil across years and environments 
in early MGs (Dardanelli et al. 2006). Heat effects on seed protein, oil, and fatty 
acids were also evaluated by using a growth chamber where one soybean was grown 
at normal temperature (25/20 °C), higher temperature (36/30 °C), and at heat stress 
(40/36 °C). Light intensity was about 1000 μmol m−2·s−1, which was supplied with 
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a combination of 10 high pressure sodium and metal halide lights, each of 
400 W. Results showed that soybean grown under high temperature showed a lower 
content of protein and linolenic acid, but higher content of oil and oleic acid 
(Figs. 1.2a, b, 1.3, and 1.4a, b). Although high temperature may promote oil produc-
tion, this pattern cannot be generalized as moderate high temperature can increase 
protein, but severe high temperature can decrease protein. The effect of temperature 
and maturity on seed protein and oil was also investigated by previous researchers. 
For example, in an experiment conducted by Piper and Boote (1999), they evaluated 
the effects of field experiments across 60 environments in 20 cultivars from 10 
MGs. Temperatures across these environments ranged from 14.6 to 28.7 °C. Results 
obtained from these field experiments showed a quadratic relationship between pro-
tein and mean daily temperature during seed fill with higher concentrations of pro-
tein with temperatures below 20 °C. Other research conducted to investigate the 
effects of mean temperature during the developmental period of soybean on seed 
composition showed a negative correlation between oil content and mean tempera-
ture during seed maturation (Maestri et al. 1998), but no effect of temperature on 
protein or fatty acids was recorded. It was concluded that the variability of seed 
composition constituents was due to MG, genotype within MG, environment, and 
their interactions (Bellaloui et al. 2009c).
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Fig. 1.2  Effect of 
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Rincker et al. (2014) studied MG II, MG III, and MG IV soybean cultivars over 
a period of 80 years and reported a decrease of 0.16–0.22 g kg−1 year−1 in seed pro-
tein contents and a decrease of 0.05–0.14 g kg−1 year−1 in seed oil contents due to 
the fact that protein and oil contents are negatively correlated. Other studies reported 
similar results of decrease in seed protein and oil contents over times depending on 
the genetic backgrounds (Voldeng et al. 1997; Wilcox 2001; Wilson 2004).

A recent study showed that the use of harvest aids such as paraquat, carfentrazone-
ethyl (AIM), glyphosate, and sodium chlorate affect seed composition, especially 
seed protein, fructose, oleic acid, oil, and fructose contents; however, they had small 
effects on seed amino acids contents during development stages R6 and R7 depend-
ing on the year of growth (Bellaloui et al. 2020). For example, seed palmitic acid, 
stearic acid, and linolenic acid have not been affected by the addition of harvest aids 
at the R7 growth stage; however, the addition of paraquat plus AIM or paraquat 
caused a decrease in seed oleic acid content and a high increase in seed oil content. 
The addition of glyphosate increased the seed protein content, while the addition of 
NaClO3 decreased it. The addition of both AIM and glyphosate decreased the seed 
fructose content; however, a small non-significant effect of the addition of these 
harvest aids was observed for seed amino acids contents (Bellaloui et al. 2020).
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To separate the effects of genotype from environment and maturity effects, a 
2-year experiment was conducted to study the effect of maturity on seed composi-
tion without the bias of the confounding factors of genotype and maturity (Bellaloui 
et al. 2009a, b, c). In this research, two sets of near-isogenic lines that developed 
with different maturities within a common genotypic background were used. One 
set with nine isolines was derived from “Clark” (Johnson 1958) and the other isoline 
set with seven lines was derived from “Harosoy” (Weiss and Stevenson 1955). The 
maturity in each set was different due to the combination of maturity genes (E1, E2, 
E3, E5) (the maturity of each line within a set varied, but all had a common geno-
typic background). This experiment allowed investigating the effects of maturity 
among and between the Clark and Harosoy isoline sets on seed composition in the 
Early Soybean Production System of the midsouth (Bellaloui et al. 2009a, b, c).
They found that there were positive linear relationships between protein content and 
maturity among isolines of the Clark set in 2004 (R2 = 0.75; P ≤ 0.001) and 2005 
(R2 = 0.63; P ≤ 0.001). However, in Harosoy isolines, there was no relationship 
between protein and maturity. On the other hand, there were negative linear rela-
tionship between oil content and maturity for Clark (in 2004, R2 = 0.82, P ≤ 0.001; 
in 2005, R2 = 0.91, P ≤ 0.0001) and Harosoy (in 2004, R2 = 0.19, P ≤ 0.05; in 2005, 
R2 = 0.36, P ≤ 0.01). Also, they found that maturity had a bigger influence on seed 
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composition than maximum temperature. They concluded that the relationship 
between seed composition and maturity was different between the Clark and 
Harosoy sets of isolines, depending on the range of temperature, as the range of 
maximum temperature during the last 20 days before maturity for the Harosoy iso-
line set (early isolines) was from 31.6 to 33.6 °C in 2004 and from 33.5 to 35.5 °C 
in 2005. However, the maximum temperature for the Clark isoline set was from 31.8 
to 33.5 °C in 2004 and from 33.2 to 36 °C in 2005. The lowest protein concentra-
tions were found when temperature ranges from 20 °C to 25 °C and the highest 
protein contents were found at temperatures lower than 20 °C or greater than 25 °C 
(Piper and Boote 1999; Dardanelli et  al. 2006). Moreover, temperature during 
seed-fill was the main reason for maximal protein in MG II-III and MG VI in some 
environments where MG II-III generally matured under higher temperatures than 
MG VI. The total oil content increased as temperature increased to a certain point, 
then decreased as temperature increased (Gibson and Mullen 1996; Dornbos and 
Mullen 1992).

Effects of drought on seed protein, oil, and fatty acids were investigated in a 
greenhouse experiment. The experiment was conducted to evaluate the responses of 
slow-wilting trait to heat and drought using NC-Roy (fast wilting: Control1), Boggs 
(intermediate in wilting: Control2), and NTCPR94–5157 (slow-wilting: SW1) and 
N04–9646 (slow-wilting: SW2) genotypes. Plants were either well watered or 
drought stressed. Soil of watered plants was kept between −15 and −20 kPa and this 
was considered the field capacity and used as control. Drought-stressed plants were 
kept between −90 and −100 kPa (Bellaloui et al. 2010a) and were considered fully 
matured when they reached R8 (full maturity) according to Fehr and Caviness 
(1977). At full maturity, 95% of pods reached full maturity. Three replicates were 
used in each treatment. Greenhouse temperature conditions were kept at 34 °C ± 9 °C 
during the day and 28 °C ± 7 °C at night. Photosynthetic photon flux density (PPFD) 
during the day of about 800–2300 μmol·m−2·s−1 was measured by a quantum meter 
(Spectrum Technologies, Inc., Aurora. Illinois, USA). The wide range of light inten-
sity reflects a bright, sunny, or cloudy day. The experiment was conducted during 
the normal growing season (from April to September) to simulate the growing sea-
son photoperiod of soybean production in the midsouth USA. The fully expanded 
leaves at seed-fill stages (R5-R6) were analyzed for water potential and mineral 
nutrition. Mature seeds at R8 were harvested for seed protein, oil, and fatty acids. 
The results from this experiment showed that protein and oleic acid were higher in 
slow-wilting soybeans than the controls (Figs. 1.5a,b, 1.6, 1.7, 1.8, 1.9, 1.10, and 
1.11a, b) because of the inverse relationships between protein and oil and between 
oleic acid and linolenic acid. This was explained by the fact that slow-wilting soy-
bean has the ability to maintain its cell water turgor and higher leaf water potential 
compared to controls.

The genetic modification of the fatty acid composition of soybean oil has been 
previously reported by Fehr (2007). For example, modified soybean oils have been 
sold commercially, including oils in which linolenic acid (18:3) content has been 
reduced from 8 to 1% and oleic acid (18:1) has been increased from 25 to >80%. 
This oil composition reduces or eliminates the need for hydrogenation to achieve 

1  Seed Protein, Oil, Fatty Acids, and Amino Acids: Effects of Genetic…
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stability, minimize or eliminate transfats production, and prolong shelf life. Further, 
oil with palmitic acid (16:0) levels reduced from 11 to <4% has been achieved, 
resulting in oil low in saturated fatty acids content, a desirable oil trait for cardiovas-
cular health. Genetic modification of oils has been achieved by genetic engineering 
and conventional breeding. It was reported that mutagenesis was the conventional 
breeding method used to develop the major genes contributing to reduced palmitic 
and linolenic acids, while genetic engineering was used to increase oleic acid to 
>80%. Leamy et al. (2017) reported that soybean (Glycine max) is a major crop in 
the world (Medic et al. 2014; Leamy et al. (2017). It was reported that decreased 
levels of saturated palmitic acid and increased levels of unsaturated oleic acid in 
soybean oil are beneficial for human cardiovascular health. Therefore, these oil 
traits became one of the major goals of soybean breeders.

In a recent study, Del Conte et  al. (2020) found strong positive correlations 
between seed numbers, pod numbers, and plant node numbers and seed oil content, 
and these agronomic traits can be used for indirect selection for increased seed oil 
content.

Soybean [Glycine max (L.) Merr.] is grown worldwide due to the high protein 
and oil contents of its seed (Medic et al. 2014), and the characterization of soybean 
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