S EI
Architecture
by Example

Using C# and .NET

Paul Michaels

Foreword by Mark Richards

Software Architecture by
Example

Paul Michaels
Foreword by Mark Richards

Apress’

Software Architecture by Example: Using C# and .NET

Paul Michaels
Derbyshire, UK

ISBN-13 (pbk): 978-1-4842-7989-2 ISBN-13 (electronic): 978-1-4842-7990-8
https://doi.org/10.1007/978-1-4842-7990-8

Copyright © 2022 by Paul Michaels

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Laura Berendson

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at https://link.springer.com/book/10.1007/
978-1-4842-7989-2.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7990-8

To my wife, Claire, who has always been on, and at, my side,
even when I have not.

And to my dad, who has understood and supported me in everything
that I've done from the minute I was born.

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical ReVIEWETccussesssnssssnsssassssnsssassssassssasssansssansssnssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
T A ——— XXi
Chapter 1: The Ticket Sales Problem..........ccccuusemmmmmssssnsmmssssssnmssssssssessssssssssssssnsnsnss 1
22T (0| (01740 TR 2
REQUITBIMENTS.......eiciete st e e e e e bbb b e e e s 3
OPLIONS e ——————————— 4
MANUAI PrOCESScuceieeerreeressesessesessesesesssssssese e sessesessssesssssssssssessssssssssssssssssssssssssssssnsssssssnns 4
EXISHING SYSTEM ... e 6
Existing System ConsSiderationsc.ccovverererernnsnesese s 7
Minimum Viable Product.........ccooreerereere e 8
Target ArCHITECIUNE.....cveeer et re s 8
How to Deal with High TRIOUGRPUL.........ccooiee e 9
Widening the FUNNEL..........o.oier s 10
MURIPIE FUNNEIS ...ttt b e e s b e e 11
MESSAGE QUEBUESueveuerrrseerreesreesesese s e e ss e s e e ss e e s n s re e e s e s e re e s e e nss e nsanis 13
MESSAGE BIOKEIS......ccveerrrsererresrsresesesessssssesssesese e s s s sessesesss e ssssesessssessssessssssenssssssssensnnes 14
Separation 0f CONCEINScccverieriririere s s b e s e e s b et ne e nne s 16
Target Architecture Diagram........c.cooeeresernnesenesersse s se e e sesesssnens 17
0 18

A Note 0N CloUT VENAOTScccoveeerererieeresesese s sessesessssessesesessssssssnens 19

WRY ClOUA?..... e r e se e s e p e ne e nennnne s 20

TABLE OF CONTENTS

6 10 1] 0[S 21
EXTEINAL APIS......ooeeiecee e 21
Getting Ticket AVaIlability........ccoevrevererieriere s s s s e e s sae e s e saesaesasnensesaens 21
00 T T o T T (] R 25

£ 11114 7 29

Chapter 2: The Cash Desk Problemccccusssemmmmnssssssssssssssssmssssssssssssssssssssssssnsnss 31

22T (00130 32

REQUITBIMENTS.......cieiiie i e e e s e s p e e b e e ae e ns 32
OPLIONS o —————————————————— 32
MANUAI PrOCESSvcuerveerercsersesesesesessesessese e ses e s e sse e ses e e s e sse e sessssessssessesssessssssssnessanes 33

Target ArChITECIUNE.....c.vv e e e 36
AU ... e 36
EVENT SOUICING ..covvveeieerircsine e 40
CQRS.....ccccceece s AR E e E e 46
Target Architecture Diagram..........coccorerernnesenesensse s s ses e ssnnens 47

e 1110 TSRS 49
Persisting EVENts 10 MEMOIY.........ccovveiienmnie s 49
Persisting EVENES 10 DiSK......c.cccvurernsmsenesesnse s ssssesssss s s sssssssssssesesssssssssessnnes 52

11104 RS 61

Chapter 3: The Travel Agent Problemccccusemmmnsssnnnmmsssssssmmmsssssssssssssssesssssssssnss 63

52 o1 (o (0] T o OSSR 64

REQUITBIMENTS.......cieecie s e e e e e e e s b e e e nns 65
OPLIONS g e ne s 66
MANUAI PrOCESSecueeecreeceeseesiecseseses e e se e s se s s e s e ses e s e sse e saesesesseessssessnns 66
TrANSACTHIONS ... r e se e e s e s e e e e nnn e 67
Distributed TranSaACHONSccoeeerrcrererer e 4l
Distributed Transaction With TIMEOUL............ccvrerrirrerr e s 74
BOOK @N0 CANCEL.......coeeereecereeerecreeee e 75
HOIO @ BOOKING ...cveviirciiericcir et s st s s s s 76

TABLE OF CONTENTS

AdVaNCEd PUICRASE ... s 76
BUSINESS DBCISIONvceeiiireeriee et 76
Target ArChItECIUNE......c e ————— 77
STALETUI SEIVICE ...cvveccerir e 79
DiStriDUEA SEIVICEceeereceeeccrirr e 79
Target Architecture Diagram........cccccevervrvrie e s s n 79

e 11110 TSRS SRS 80
ProjeCt STFUCIUIE ... e 80
Service Bus Configurationcovcvvvenisnsne s s 82
0010 01T 0] TP 85
SUIMIMAIY....eeeereeceeee s e e e e e e e s ae e e e e s e e e e e Re e s ee e se e e e nRe e e se e nen e e nnnneas 90
Chapter 4: The Social Media Problem..........cccusmmmmnssnmnmmssssssnmmssssssnssssssssnssssssnsnsnss 93
572 o1 (o (0] o TSRS 94
3T o[0T =T 41T 1 OO 94
0010 RS 95
MaNUAI PrOCESS ..ot s e s 96
CQRS.....ccccceeee et R R R e e 97
Target ArChITECIUNE......cve e sae e e e ene e 102
6 0 1] 0[SO 104
SCNEMA CrEaLIONcececcererrceescse e sn s 104
Updating the Databaseccccuvererierierninnererer e s s se e s a s s s saesne e naen 105
ChecKing the DAtacceceverernienrirereses s s s s e se s s sae e s e saesaesasnsssesaees 107
WED SEIVICE.....cieieeccririrree s 107
AccesSing MONQGODB..........cccviiirrrrr e e e e 110
LT3 03 1 R 114
ProCess Data SEIVICEovieerererernseise s se e 118
31111117 o OO 122

vii

TABLE OF CONTENTS

Chapter 5: The Admin Application Problem...........ccuccmminsssnnnmnssssnnnmnsssssssssssssnns 125
BaCKGIOUNG.......ccereececcer e s e p e e s p e nne 126
REQUIFBIMENTS.......ciiiicicir e e e e b e e ne 126
OPEIONS e ———————————————————————— 127
MANUAI PrOCESSciveeiereresiesessese s se s s s e s se s e s e s s ses e saessessssnsssnens 127
3] 0 OSSR 129

Single ReSPONSIDIlItYccvvrierinnirieresr s ne 130
07072 0 T 1< o OO 133
LiSKOV SUDSHIIULIONccvieiicerese s s sr s nsanis 136
Interface Segregation PrinCIiPIeccoveveresernsesne s 138
Dependency INVErsion PrNCIPIEccvvevrnenirise s se e sss s ssnnes 139
Methods of EXtending SOfWAIE.........cccvvvieriernrerrere s se s s sae s e e ssesnees 141
HOOKS......coeiiitrii it s 141
IMESSAQES ...cverurirerieririe et r s e e b s e e e E e R e e A e R e e e e e Reeae e e an 142
1= 1] OO 145
Target ArChITECIUNE.c.cve e e e e s 148
6 101 0[S 149
BasiC FUNCLIONALILYccoueierirreece e s n e s s sn e s ne e 149
EXEENSIDIITY ..vovveeeee e s 154
{73 (0] (0 ST T (10 156
SUMIMANY ..ttt s E e e e e e R e e e e e e e Re e R e e e e e Re e Re R e e e e e Re b e e e e e aennin 157

Chapter 6: The Travel Rep Problemcccccinemmmmnnsssnmnmmnssssnmmssssssmsssssssssssssnns 159
BaCKGIOUNG...... .ot n e n e e e nnen 160
L[0T =T 41T 1] OSSN 160
L0003 161

MANUAI PrOCESScoviuiericerincse e e a s 161
0 T 11 T O 162
SIdECAr PAHEIN........eecceer s 163
Ambassador Pattern........c.ccvcrinini s ————— 164

viii

TABLE OF CONTENTS

Target ArChITECIUNE.c.cve e e r e e e 166
L0041 1T 3 167

e 11110 LTSS SRS PRSSN 168
PrOJECT STIUCIUIE ...ttt e e e s 169
TravelReP.CENTIAIADIccvveererre st r e s s sa s e sresa e e s ae s ae s a e e e e aennen 170

Lz Ve LT 030 A o o S 173
TravelRep. AMDASSAUOcoceierererier e e e s e e s a e s ae e s e e sae e ae s s 174
(0041 1T 3O 182

BT 1] 111 OSSOSO 196
Appendix A: Technical AppPendiX.....ccccuusssssssmmsnmmmrsssssssssnsssnssessssssssssssssssssssssssssnnnnns 199
CRAPTEE T .o —————————————— 199
INO@X . uuerisssnnnsssnnnsssnnssssanssssanssssanssssannsssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 205

ix

About the Author

Paul Michaels is the Head of Development at musicMagpie.
He started his career as a professional software engineer

¥ in 1997. Paul is a regular speaker, published author, and
Microsoft MVP. He enjoys programming, playing with new
technology, and finding neat solutions to problems. When
he’s not working, you can find him cycling or walking around
| the Peak District, playing table tennis, or trying to cook for

his wife and two children. You can follow him on Twitter at
@paul_michaels or find him on LinkedIn. He also writes a
blog at http://pmichaels.net.

http://pmichaels.net

About the Technical Reviewer

Kasam Shaikh is an Azure Al enthusiast, published author,
global speaker, community MVP, and Microsoft Docs
contributor. He has more than 14 years of experience in

the IT industry and is a regular speaker at various meetups,
online communities, and international conferences on Azure
and Al He is currently working as Senior Cloud Architect for
a multinational firm where he leads multiple programs in the
Practice for Microsoft Cloud Platform and Low Code. He is
also a founder of the community named Dear Azure-Azure
INDIA (az-India) and leads the community for learning
Microsoft Azure. He owns a YouTube channel and website
and shares his experiences over his website

(www . kasamshaikh.com).

xiii

http://www.kasamshaikh.com

Acknowledgments

For this book, I have an absolute phone book of people to thank for their help.

Firstly, I have to thank my daughter, Abi, for all the artwork in the book.

Special thanks to Ash Burgess and Kevin Smith for putting up with impromptu
requests for a discussion or a review of an idea, and for Kev’s painstaking and repeated
explanations of event sourcing.

Thanks to Ian Curtis for reviewing my architectural diagram, and to James Little for
making me think so hard about architecture that a book seemed a good idea.

The travel industry is very complex, and I don’t think I could have landed in a better
place, where I had the expertise and advice of both David Hilton and Jagdip Ajimal.

When it came to containers, I found that what I was trying to do kept throwing up
roadblocks until Rob Richardson generously offered his time and expertise.

The examples in this book are based on my time working across industries and trying
to solve problems. I've been fortunate in my career to work with a number of very clever
and talented people. There are probably too many of these to mention, and while they
may not have directly helped with this book, I'd like to acknowledge their contribution.

Finally, I'd like to thank the team at Apress - especially Shrikant for dealing with the
various twists and turns that the book, and my life, has taken during its creation, and
Smriti for bringing me onto Apress in the first place.

Introduction

All the code in this book is available from the following GitHub repo:
https://github.com/Apress/software-architecture-by-example

Should you choose to follow along and create the solution for each chapter, it may be
helpful to have a clone of the code available for reference.

Note As I'll be working on a Windows machine, what | do will only be tested on
Windows; however, again, this is software architecture, not software architecture
for Windows, so everything should also work on MacOS, Linux, or any other
modern OS: .Net is a cross-platform framework.

Technology

Let’s quickly discuss the specific technologies that we're going to choose and why.
Firstly, I will use Visual Studio to write all of the code samples in this book. You can
download the community edition of this here:

https://visualstudio.microsoft.com/vs/community/
You may also wish to use VS Code, which can be found here:
https://code.visualstudio.com/download

All of the applications that we create will be in .Net and written in C#. This choice
I made simply because it’s the language that I'm most familiar with; however, I don’t
believe there’s anything in here that couldn’t be translated to any other modern OO
development language; after all, architecture should be language agnostic. Most of the
principles are broader than a specific language and could apply to any language capable
of making HTTP calls.

xvii

https://github.com/Apress/software-architecture-by-example
https://visualstudio.microsoft.com/vs/community/
https://code.visualstudio.com/download

INTRODUCTION

Setup

In this section, we'll cover the basic setup that you'll need to follow along with the code
samples. However, since this is predominantly a book on architecture, you should be
able to translate the concepts to any language.

Let’s cover a basic setup for those readers that wish to follow along.

Terminal

If you choose to use VS Code, you have a terminal built in; however, there are other
options.

Since you're likely to be using Git, you can easily use git bash for the terminal
commands; you can download git for windows here:

https://gitforwindows.org/

Another possibility if you're on Windows is the new (at least at the time of writing)
Microsoft Terminal. This can be found here:

https://aka.ms/terminal

Note This is, in fact, an open source product; you can find the source code for
it here:

https://github.com/Microsoft/Terminal

Examples

The title of this book is Software Architecture by Example, so it will not surprise you to
learn that there are examples in each chapter. The purpose is to propose a problem,
suggest one or more solutions, and provide an example of how that solution might work
in reality.

What this doesn’t mean is that contained within the pages of this book are full,
complete, solutions to each problem. To illustrate my point by example, for the first
chapter, we address the problem of a business that sells tickets for concerts and festivals.

xviii

https://gitforwindows.org/
https://aka.ms/terminal
https://github.com/Microsoft/Terminal

INTRODUCTION

In that chapter, there are code samples that will compile and run, but those samples are
for illustration purposes; there’s no website there, but I've made sure that each element
of the system is there by proxy - so the website will be simulated by a console app.

How to Use This Book

There are a number of ways that you may choose to use this book. Each chapter has
an explanation of an architectural principle, driven by the typical requirement that it
satisfies; once this has been explained, there is an example in each chapter.

All of the code for every chapter can be found here:

https://github.com/Apress/software-architecture-by-example

You can choose to follow along and recreate the examples, or you can clone the
repo and simply view the code, or you may decide that you're not interested in a specific
implementation, in which case, you can simply skip the examples altogether.

Xix

https://github.com/Apress/software-architecture-by-example

Foreword

The topic of software architecture is hard to describe, teach, and learn, mostly because
no one really knows what it is. Some say it’s the structural aspect of a system, similar

to an architectural blueprint of a large office building or skyscraper. Some say it's how
different parts of a system interconnect or interact with one another. Others say it’s

the foundational aspects of a system that meets certain business goals and needs,
irrespective of the system functionality. So who's right? Well, in fact, they all are, which is
why it’s so hard to explain and teach software architecture.

Decades ago, a software architect primarily focused on the technical aspects of
a system - how the various parts, or components, of a system interacted with one
another through various interfaces, contracts, and protocols. Today, however, software
architecture impacts and influences so much more, including business alignment, data,
deployment environments, methodologies, platforms, and so on. These intersections
and necessary corresponding alignments have significantly expanded the role of a
software architect. In addition to technical skills, a software architect must also possess
exceptional people skills to be able to collaborate and negotiate with numerous
business and technical stakeholders to ensure that the architecture is aligned with all
these factors. With all this responsibility in an ever-expanding role, it's no wonder why
software architecture is so difficult to understand.

Back in 2010, a well-known architect named Ted Neward came up with the notion
of an “architectural kata” - a way of being able to practice software architecture, much
in the same way different moves, or forms, are practiced in martial arts. These small,
targeted exercises provide a context to practice some of the core skills an architect must
hone to become effective - identifying important driving characteristics (“-ilities”) that
the architecture must support, identifying possible solutions, analyzing the trade-offs of
these solutions, and making architecture decisions.

Through the years, I have found that feaching by example helps bring students (and
readers) from the abstract to the concrete, allowing them to better understand not only
what software architecture is but also why it’s so vital to the success of any system, which
brings me to this book. Through the use of concrete examples, Paul Michaels helps the

xxi

FOREWORD

reader understand some of the core abstract concepts of software architecture. This
form of teaching not only makes the connection between the abstract and concrete but
also gives the reader a chance to practice these concepts. As Paul states in this book, “In
software, as in life, everything has a price.” Leveraging practical examples is one way of
being able to learn how to perform the trade-off analysis necessary to arrive at the most
appropriate architectural solution. After all, as we all know, “..it depends.”
—Mark Richards
Founder, DeveloperToArchitect.com
Author of Fundamentals of Software Architecture and
Software Architecture: The Hard Parts

xxii

CHAPTER 1

The Ticket Sales Problem

When I first started out in IT, the industry was still quite niche. Although many people
used computers in their day job, access to the Internet or even a personal computer

at home was still a way off for most people. This was around the time that the industry
was gearing up to fix the millennium bug: an issue that was prevalent in many systems,
because 20 or 30 years earlier, when these systems were written, the programmers had
assumed they would have been replaced before the year 2000.

At this time, if you wanted to go and see a band play, you typically had two choices:
you physically visited a record shop or ticket sales venue, for which the queues often
stretched out of the door, or you used the telephone. These days, you wouldn’t have to go
far to find someone young enough to not remember such times, but it’s worth bearing in

mind how far we have come in 20 years!

© Paul Michaels 2022
P. Michaels, Software Architecture by Example, https://doi.org/10.1007/978-1-4842-7990-8_1

https://doi.org/10.1007/978-1-4842-7990-8_1

CHAPTER 1 THE TICKET SALES PROBLEM

The queues stretching out of the door of the ticket booths have now been replaced
by millions of people accessing a website at the same time to try and buy tickets. In this
chapter, we'll be discussing one of the most prevalent issues in the IT industry today:
how to cope with massive spikes in traffic.

Background

Our new client, 123 Tickets, has asked us to replace their existing system. The existing
system that they run works fine for most of the year, but the company makes most of
their revenue from just three dates, when they are contracted as the main reseller for
premier music festivals. Their existing system simply can’t cope with the huge spike in
sales and frequently crashes just minutes after the tickets go on sale.

The venues are unhappy with 123 Tickets’ ability to cope with the sales, and the
contracts are in danger of not being renewed.

Let’s have a look at last year’s usage. Figure 1-1 shows a graph with the usage and
error statistics from last year.

Chart Title

1,600000.00

1 400000.00
1,200000,00
1.000000.00
800,000.00
500,000.00
400,000.00
200 ,000.00 51
Il i
0.00 — BE_ i

> &)

Q> Q¥
o o 5 o o o s A A A O
S \6”\ \d,\ \Qo,\ & \6‘\ \@a\ \Qo,\ \\Q,\ \,\.\,\ \,3,\
I\ N Qr Qr QY Qr Qo N\ N\ Y

mTicketsSold mAttempted Purchases ® Error Count

Figure 1-1. System usage graph

2

CHAPTER 1 THE TICKET SALES PROBLEM

In Figure 1-1, we can see some very useful information. Firstly, we can see that
almost all the business that this company has conducted is during three months of the
year; and we can see that when the system is busy, the system errors spike. We can also
see that the demand for the tickets far exceeds the supply.

Let’s consider exactly what the requirements from 123 Tickets are.

Requirements

Whenever a system, of any type, is designed, a target should be established. For example,
if you're designing a car, your target is a vehicle that transports one or more people
between places and is roadworthy (whatever that may mean in your locality). The fact
that your car may have three wheels, or two doors, or be painted blue is an optional
feature; that is, the car is still a car if it has two, four, or five doors; it’s still a car if it is blue
or red; however, it is not a car if it has no wheels because it would be unable to fulfill its
requirement of transporting people.

When designing a system, it’s always worth considering this: what the system
needs to do in order to fulfill its basic function. For example, our ticket ordering system
presumably needs to allow people to purchase tickets - if it did not, we could not
sensibly call it a “ticket ordering system”; but does it need to allow people to purchase
ice cream when they arrive at the venue? Probably not, as without that, it’s still a “ticket
ordering system.”

We should, therefore, discuss with the client the list of things that the system needs
to do in order to be the system; and all the time, we should challenge whether that thing
is necessary. To clarify, 'm not saying that anyone should sit in front of a client and
argue them into submission about features that they are requesting and willing to pay
for; however, we may decide that what is being described is not a single system, but two,
or three. Why this is useful is something we’ll revisit later in this chapter.

I'm very purposely staying away from any reference to software at this stage, and the
reason will become clearer later on.

Let’s lay out exactly what we need the system for 123 Tickets to do. This list is a high-
level list of features that the current system provides and which the client has identified
we would need to provide:

e Maintain a list of registered users.

o Provide a list of upcoming events for which there are tickets available.

CHAPTER 1 THE TICKET SALES PROBLEM

o Allow a user to purchase up to ten tickets for any single event.
e Maintain a count of available tickets.

o Allow users to pick a seat where applicable - not all events are seated
(and none of the big festivals are seated).

Now that we've identified what’s required, we can discuss the options for
providing that.

Options

All too often, software developers and architects reach for the tools that they know
best. I'm no exception; any code samples that you'll see in this book are written in .Net.
However, exploring other possibilities is not only a useful exercise but also solidifies the
requirements in our minds. In each chapter, I'll make the case for solving the problem
without using technology.
It may seem like a strange thing for a book on software architecture; however, all
over the world, people are solving problems without technology; in some cases, that’s
the best solution. Software design and development costs money; in some cases, it costs
a considerable amount of money, and it is not without risk. According to a 2017 report
from the Project Management Institute, between 6 and 24% of projects end in failure.
These are not only software projects; however, if we accept that as a rough guide, it
means that we can reasonably expect around one in ten software projects to fail (source:
www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2017).
In our case, 123 Tickets has an existing system, but let’s imagine that our advice to
the client is to remove that system and replace it with a manual process. What would that
look like?

Manual Process

First of all, we would need to maintain a list of valid users for the system; we could keep
this in an address book. Each time someone wished to be added to the system, we would
write their name and address into our address book; the maintenance of this book would
represent all or part of somebody’s job.

http://www.pmi.org/learning/thought-leadership/pulse/pulse-of-the-profession-2017

CHAPTER 1 THE TICKET SALES PROBLEM

Secondly, we would keep a list of events; presumably, we'd use something like
ayearly diary to do so; each event would be marked in on the day it was to happen.
Somebody would then go through every event for the following two or three months and
write on a sheet of paper what, and when, these events were.

Our next step would be to order the tickets from the supplier - when they arrive, our
ticket count would simply be that somebody would simply count the remaining tickets
for each event.

When a customer phoned up, the operator would go through the following process:

1. Askfor aname, and look them up in the phone book; if they are
not already in there, then add them.

2. Check the event that they wished to book a ticket for and ensure
that there were sufficient tickets.

3. Ifthe venue is seated, talk through the options for seating with the
customer, and establish which tickets would be best.

4. Put the tickets in an envelope (so that they cannot be sold to
another person) and take payment details.

5. Ifthe payment fails, or the customer changes their mind before
payment is made, the tickets are returned to the pile for that event;
otherwise, they are posted to the customer.

In fact, when we consider this, we realize that the manual process is actually quite
neat; maybe this is the right approach. Of course, there’s a minor snag; even during
the smallest festival, over 500,000 attempts were made to purchase tickets; however,
before we abandon our manual approach, let’s just continue this thought experiment for
another few paragraphs.

Let’s say that we did need to implement this manually and we had a single operator.
What would happen if 500,000 or more people tried to phone in to buy tickets at the
same time? Well, the way most basic phone systems work is that the first person would
be connected, and until that sale had finished, everyone would get an engaged tone.

So how could we structure this so that, given enough time, we could deal with all
these requests? One possible solution may be to divert the calls to an answering machine
service (for the purpose of this, we’ll assume that the answering machine can take
multiple calls at any one time without the caller getting an engaged tone), asking the
customer to leave details of the venue and ticket requirements; the operator could then
phone each person back as they became free.

