An incisive discussion of biofuel production from an economically informed technical perspective that addresses sustainability and commercialization together

In Biodiesel Production: Feedstocks, Catalysts, and Technologies, renowned chemists Drs. Rokhum, Halder, Ngaosuwan, and Assabumrungrat present an up-to-date account of the most recent developments, challenges, and trends in biodiesel production. The book addresses select feedstocks, including edible and non-edible oils, waste cooking oil, microalgae, and animal fats, and highlights their advantages and disadvantages from a variety of perspectives. It also discusses several catalysts used in each of their methods of preparation, as well as their synthesis, reactivity, recycling techniques, and stability.

The contributions explore recently developed technologies for sustainable production of biodiesel and provides robust treatments of their sustainability, commercialization, and their prospects for future biodiesel production.

- A thorough introduction to the various catalysts used in the preparation of biodiesel and their characteristics
- Comprehensive explorations of biofuel production from technical and economic perspectives, with complete treatments of their sustainability and commercialization
- Practical discussions of the development of new strategies for sustainable and economically viable biodiesel production
- In-depth examinations of biodiesel feedstocks, catalysts, and technologies

Perfect for academic researchers and industrial scientists working in fields that involve biofuels, bioenergy, catalysis, and materials science, Biodiesel Production: Feedstocks, Catalysts, and Technologies will also earn a place in the libraries of bioenergy regulators.

Samuel Lalthazuala Rokhum, PhD, is a Postdoctoral Fellow in the laboratory of Prof. Andrew EH Wheatley in the Department of Chemistry, Cambridge University, UK and Assistant Professor in the Department of Chemistry, National Institute of Technology in Silchar, India. His research interest includes organic chemistry, material chemistry, renewable energy, and heterogeneous catalysis. He is actively engaged in numerous scientific societies and currently served as an Academic Editor of Journal of Chemistry (Hindawi) and a guest editor in several journals.

Gopinath Halder, Ph.D., is Professor in the Department of Chemical Engineering, National Institute of Technology Durgapur, India. As a chemical engineer, Prof. Halder has more than two decades of teaching and research experience in biofuel synthesis from non-edible and microalgal feedstock, preparation of heterogeneous carbonaceous catalyst, process optimization and bioremediation of contaminated waste water containing heavy metals, fluoride ions and pharmaceutical active compounds.

Suttichai Assabumrungrat is Full Professor in Chemical Engineering, and the Director of Bio-Circular-Green economy Technology and Engineering Center (BCGeTEC), Faculty of Engineering at Chulalongkorn University, Bangkok, Thailand. His research interest includes applications of multifunctional reactors and process intensification for chemical, petrochemical and biorefinery industries. Particular focuses are on technologies related to production of biofuels, bio-based chemicals and hydrogen as well as CO2 capture and utilization.

Kanokwan Ngaosuwan is Associate Professor in Chemical Engineering at the Division of Chemical Engineering, Rajamangala University of Technology Krungthep, Bangkok, Thailand. She earned her Ph.D. degree in chemical engineering from Chulalongkorn University, Thailand. Her research interests include biomass conversion, heterogeneous catalysis and catalytic reaction engineering, and process intensification.
Biodiesel Production
Biodiesel Production: Feedstocks, Catalysts, and Technologies

Edited by

Dr. Samuel Lalthazuala Rokhum
National Institute of Technology Silchar
Department of Chemistry
NIT Road, Fakiratilla
Silchar, Assam
India

Prof. Gopinath Halder
National Institute of Technology Durgapur
Department of Chemical Engineering
National Institute Technology
Durgapur
India

Prof. Suttichai Assabumrungrat
Chulalongkorn University
Center of Excellence in Catalysis and Catalytic Reaction Engineering
and Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC)
Department of Chemical Engineering
Bangkok, Thailand

Assoc. Prof. Kanokwan Ngaosuwan
Rajamangala University of Technology Krungthep
Chemical Engineering Devison
Bangkok
Thailand

WILEY
Contents

Preface xv
List of Contributors xvii
An Overview of Biodiesel Production xxi

Part 1 Biodiesel Feedstocks 1

1 Advances in Production of Biodiesel from Vegetable Oils and Animal Fats 3
 Umer Rashid and Balkis Hazmi
 1.1 Introduction 3
 1.2 History of the Use of Vegetable Oil in Biodiesel 6
 1.3 Feedstocks for Biodiesel Production 6
 1.3.1 Generations of Biodiesel 7
 1.3.2 First-Generation Biodiesel 7
 1.3.3 Second-Generation Biodiesel 8
 1.3.4 Third-Generation Biodiesel 8
 1.4 Basics of the Transesterification Reaction 8
 1.5 Variables Affecting Transesterification Reaction 10
 1.6 Alkaline-Catalyzed Transesterification 10
 1.7 Acid-Catalyzed Transesterification 15
 1.8 Enzymatic-Catalyzed Transesterification 16
 1.9 Fuel Properties and Quality Specifications for Biodiesel 19
 1.10 Conclusion 20
 References 21

2 Green Technologies in Valorization of Waste Cooking Oil to Biodiesel 33
 Bisheswar Karmakar and Gopinath Halder
 2.1 Introduction 33
 2.1.1 The Necessity for Biodiesel 33
 2.1.2 Sourcing the Correct Precursor 33
 2.2 Importance of Valorization 35
 2.3 Purification and Characterization 35
 2.4 Transesterification: A Comprehensive Look 36
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Conversion Techniques</td>
<td>37</td>
</tr>
<tr>
<td>2.5.1 Traditional Conversion Approaches</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1.1 Acid Catalysis</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1.2 Alkali Catalysis</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1.3 Enzyme Catalysis</td>
<td>40</td>
</tr>
<tr>
<td>2.5.1.4 Other Novel Heterogeneous Catalysts</td>
<td>40</td>
</tr>
<tr>
<td>2.5.1.5 Two-Step Catalyzed Process</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2 Modern Conversion Approaches</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2.1 Supercritical Fluids</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2.2 Microwave Irradiation</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2.3 Ultrasonication</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Economics and Environmental Impact</td>
<td>44</td>
</tr>
<tr>
<td>2.7 Conclusion and Perspectives</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>45</td>
</tr>
</tbody>
</table>

3 Non-edible Oils for Biodiesel Production: State of the Art and Future Perspectives

Valeria D’Ambrosio, Enrico Scelsi, and Carlo Pastore

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td>3.2 Vegetable Non-edible Oils</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1 General Cultivation Data</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2 Composition and Chemical–Physical Properties of Biodiesel Obtained from Non-edible Vegetable Oils</td>
<td>50</td>
</tr>
<tr>
<td>3.2.3 Biodiesel Production from Non-edible Vegetable Oil</td>
<td>54</td>
</tr>
<tr>
<td>3.2.3.1 Extraction Methods</td>
<td>54</td>
</tr>
<tr>
<td>3.2.3.2 Biodiesel Production</td>
<td>57</td>
</tr>
<tr>
<td>3.2.4 Criticisms Related to Non-edible Oils</td>
<td>57</td>
</tr>
<tr>
<td>3.3 Future Perspectives of Non-edible Oils: Oils from Waste</td>
<td>58</td>
</tr>
<tr>
<td>3.4 Conclusion</td>
<td>60</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

4 Algal Oil as a Low-Cost Feedstock for Biodiesel Production

Michael Van Lal Chhandama, Kumudini Belur Satyan, and Samuel Lalalthuara Rokhum

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.1.1 Microalgae for Biodiesel Production</td>
<td>68</td>
</tr>
<tr>
<td>4.2 Lipid and Biosynthesis of Lipid in Microalgae</td>
<td>70</td>
</tr>
<tr>
<td>4.2.1 Lipid Biosynthesis</td>
<td>71</td>
</tr>
<tr>
<td>4.2.2 Lipid Extraction</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Optimization of Lipid Production in Microalgae</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1 Nitrogen Stress</td>
<td>73</td>
</tr>
<tr>
<td>4.3.2 Phosphorous Stress</td>
<td>73</td>
</tr>
<tr>
<td>4.3.3 pH Stress</td>
<td>74</td>
</tr>
<tr>
<td>4.3.4 Temperature Stress</td>
<td>74</td>
</tr>
<tr>
<td>4.3.5 Light</td>
<td>75</td>
</tr>
<tr>
<td>4.4 Conclusion</td>
<td>75</td>
</tr>
<tr>
<td>References</td>
<td>76</td>
</tr>
</tbody>
</table>
Part 2 Different Catalysts Used in Biodiesel Production 83

5 Homogeneous Catalysts Used in Biodiesel Production 85
 Bidangshri Basumatary, Biswajit Nath, and Sanjay Basumatary

5.1 Introduction 85
5.2 Transesterification in Biodiesel Synthesis 86
5.3 Homogeneous Catalyst in Biodiesel Synthesis 88
 5.3.1 Homogeneous Acid Catalyst 88
 5.3.2 Homogeneous Base Catalyst 90
5.4 Properties of Biodiesel Produced by Homogeneous Acid and Base-Catalyzed Reactions 93
5.5 Relevance of Homogeneous Acid and Base Catalysts in Biodiesel Synthesis 96
5.6 Conclusion 96
 References 97

6 Application of Metal Oxides Catalyst in Production of Biodiesel 103
 Hui Li

6.1 Basic Metal Oxide 103
 6.1.1 Monobasic Metal Oxide 103
 6.1.1.1 Alkaline Earth Metal Oxide 103
 6.1.2 Multibasic Metal Oxide 105
 6.1.2.1 Supported on Metal Oxide 106
 6.1.2.2 Supported on Activated Carbon 106
 6.1.3 Active Site-Doped Basic Metal Oxide 107
 6.1.3.1 Alkali Metal Doped 107
 6.1.3.2 Active Metal Oxide Doped 107
 6.1.4 Mechanism of Transesterification Catalyzed by Basic Metal Oxide 108
 6.2 Acid Metal Oxide 108
 6.2.1 Monoacid Metal Oxide 109
 6.2.2 Multiacid Metal Oxide 109
 6.2.3 Supported on Metal Organic Framework 112
 6.2.4 Mechanism of Transesterification/Esterification Catalyzed by Acid Metal Oxide 112
 6.3 Deactivation of Metal Oxide 113
 References 114

7 Supported Metal/Metal Oxide Catalysts in Biodiesel Production 119
 Pratibha Agrawal and Samuel Lalthazuala Rokhum

7.1 Introduction 119
7.2 Supported Catalyst 120
7.3 Metals and Metal Oxide Supported on Alumina 120
7.4 Metals and Metal Oxide Supported on Zeolite 123
7.5 Metals and Metal Oxide Supported on ZnO 125
7.6 Metals and Metal Oxide Supported on Silica 127
Contents

7.7 Metals and Metal Oxide Supported on Biochar 128
 7.7.1 Solid Acid Catalysts 129
 7.7.2 Solid Alkali Catalysts 129
7.8 Metals and Metal Oxide Supported on Metal Organic Frameworks 131
7.9 Metal/Metal Oxide Supported on Magnetic Nanoparticles 134
7.10 Summary 135

References 136

8 Mixed Metal Oxide Catalysts in Biodiesel Production 143

Brandon Lowe, Jabbar Gardy, Kejun Wu, and Ali Hassanpour

8.1 Introduction 143
8.2 Previous Research 144
8.3 State of the Art 150
 8.3.1 Solid Acid MMO Catalysts 150
 8.3.2 Solid Base MMO Catalysts 150
 8.3.3 Solid Bifunctional MMO Catalysts 156
8.4 Discussion 157
8.5 Conclusion 161
8.6 Symbols and Nomenclature 162

References 162

9 Nanocatalysts in Biodiesel Production 167

Avinash P. Ingle, Rahul Bhagat, Mangesh P. Moharil, Samuel Lalthazuala Rokhum,
Shreshta Saxena, and S. R. Kalbande

9.1 Introduction 167
9.2 Transesterification of Vegetable Oils 169
9.3 Conventional Catalysts Used in Biodiesel Production: Advantages
 and Limitations 171
 9.3.1 Homogeneous Catalysts 171
 9.3.2 Heterogeneous Catalysts 172
 9.3.3 Biocatalysts 173
9.4 Role of Nanotechnology in Biodiesel Production 173
9.5 Different Nanocatalysts in Biodiesel Production 173
 9.5.1 Metal-Based Nanocatalysts 174
 9.5.2 Carbon-Based Nanocatalysts 175
 9.5.3 Zeolites/Nanozeolites 180
 9.5.4 Magnetic Nanocatalysts 182
 9.5.5 Nanoclays 184
 9.5.6 Other Nanocatalysts 184
9.6 Conclusion 185
 Acknowledgment 185

References 185

10 Sustainable Production of Biodiesel Using Ion-Exchange Resin Catalysts 193

Naomi Shibasaki-Kitakawa and Kousuke Hiromori

10.1 Introduction 193
10.2 Features of Ion-Exchange Resin Catalysts 194
10.3 Cation-Exchange Resin Catalyst 194
10.3.1 Notes of Caution When Comparing the Activity of Resins with Different Properties 194
10.3.2 Reversible Reduction of Resin Catalytic Activity by Water 196
10.3.3 Search for Operating Conditions for Maximum Productivity Rather than Maximum Catalytic Activity 198
10.3.4 Challenges Regarding One-Step Reaction with Simultaneous Esterification and Transesterification Catalyzed by Cation-Exchange Resin 198
10.4 Anion-Exchange Resin Catalysts 199
10.4.1 Requirements for High Catalytic Activity in the Transesterification of Triglycerides 199
10.4.2 Analysis of Previous Studies 201
10.4.3 Decreased Catalytic Activity and Regeneration Method 203
10.4.4 Additional Functions Unique to Anion-Exchange Resins 204
10.5 Summary 204
References 205

11 Advances in Bifunctional Solid Catalysts for Biodiesel Production 209
Bishwajit Changmai, Michael Van Lal Chhandama, Chhangte Vanlalveni, Andrew E.H. Wheatley, and Samuel Lalthazuala Rokhum
11.1 Introduction 209
11.2 Application of Solid Bifunctional Catalyst in Biodiesel Production 210
11.2.1 Acid–Base Bifunctional Catalysts 210
11.2.1.1 Oxides of Acid–Base 211
11.2.1.2 Acid–Base Hydrides 213
11.2.2 Bifunctional Acid Catalyst 217
11.2.2.1 Bifunctional Bronsted–Lewis Acid Oxides 217
11.2.2.2 Heteropolyacid-Based Bifunctional Catalyst 220
11.2.3 Biowaste-Derived Bifunctional Catalyst 222
11.3 Summary and Concluding Remarks 224
Acknowledgment 225
References 225

12 Application of Catalysts Derived from Renewable Resources in Production of Biodiesel 229
Kanokwan Ngaosuwan, Apiluck Eiad-ua, Atthapon Srifa, Worapon Kiatkittipong, Weerinda Appamana, Doonyapong Wongswaeng, Armando T. Quitain, and Suttichai Assabumrungrat
12.1 Introduction 229
12.2 Potential Renewable Resources for Production of Biodiesel Catalysts 230
12.2.1 Animal Resources 230
12.2.1.1 Eggshells (Chicken and Ostrich) 231
12.2.1.2 Seashells (Snail, Mussel, Oyster, and Capiz) 231
12.2.1.3 Bones 233
12.2.2 Plant Resources 233
12.2.2.1 Carbon-Supported Catalysts 233
12.2.2.2 Silica-Supported Catalysts 236
12.2.2.3 Other Potential Elements from Plant Residues 236
12.2.3 Natural Resources 236
12.2.3.1 Dolomitic Rock (Calcined Dolomite and Modified Dolomite) 236
12.2.3.2 Lime 237
12.2.3.3 Natural Clays 237
12.2.3.4 Zeolites 238
12.2.4 Industrial Waste Resources 240
12.2.4.1 Food Industry Wastes 240
12.2.4.2 Mining Industry Wastes 240
12.3 Advantages, Disadvantages, and Challenges of These Types of Catalyst for Biodiesel Production 242
Acknowledgment 243
References 243

13 Biodiesel Production Using Ionic Liquid-Based Catalysts 249
B. Sangeetha and G. Baskar
13.1 Introduction 249
13.2 Mechanism of IL-Catalyzed Biodiesel Production 250
13.3 Acidic and Basic Ionic Liquids (AILs/BILs) as Catalyst in Biodiesel Production 250
13.4 Supported Ionic Liquids in Biodiesel Production 251
13.5 IL Lipase Cocatalysts 255
13.6 Optimization and Novel Biodiesel Production Technologies Using ILs 257
13.7 Recyclability of the Ionic Liquids on Biodiesel Production 259
13.7.1 Recovery of ILs 259
13.7.2 Reuse of Ionic Liquids 260
13.8 Kinetics of IL-Catalyzed Biodiesel Production 260
13.9 Techno-Economic Analysis and Environmental Impact Analysis of Biodiesel Production Using Ionic Liquid as Catalyst 261
13.10 Conclusion 262
References 263

14 Metal–Organic Frameworks (MOFs) as Versatile Catalysts for Biodiesel Synthesis 269
Vasudeva Rao Bakuru, Marilyn Esclance DMello, and Suresh Babu Kalidindi
14.1 Introduction 269
14.1.1 Metal-Containing Secondary Building Units 271
14.1.2 Organic Linker 272
14.1.3 Pore Volume 272
14.2 Biodiesel Synthesis Over MOF Catalysts 273
14.2.1 Transesterification Reaction 274
14.2.1.1 Transesterification at SBUs of MOFs 274
14.2.1.2 Transesterification at Linker Active Sites 276
14.2.2 Esterification of Carboxylic Acids 277
14.2.2.1 Esterification of Carboxylic Acids at SBU
tos of MOFs 277
14.2.2.2 Esterification of Carboxylic Acids at Linker Active Sites 279
14.2.2.3 Esterification at Pore Volume (Guest Incorporation) 280
14.3 Conclusion 281
References 281

Part 3 Technologies, By-product Valorization and Prospects of Biodiesel Production 285

15 Upstream Strategies (Waste Oil Feedstocks, Nonedible Oils, and Unicellular Oil Feedstocks like Microalgae) 287
Aleksandra Sander and Ana Petračić

15.1 Introduction 287
15.1.1 Classification of Biodiesel 287
15.1.2 Commercial Production of Biodiesel 288
15.2 Biodiesel Feedstocks 290
15.2.1 Edible Oils as Feedstock for Biodiesel Production 291
15.2.2 Nonedible Oils as Feedstocks for Biodiesel Production 292
15.2.3 Waste Feedstocks (Waste Cooking Oils, Waste Animal Fats, Waste Coffee Ground Oil, Olive Pomace) 292
15.2.4 Unicellular Oil Feedstocks (Microalgae, Yeasts, Cyanobacteria) 293
15.3 Composition of Oils and Fats 293
15.4 Methods for Oil Extraction 294
15.4.1 Mechanical Extraction 294
15.4.2 Solvent Extraction 295
15.4.3 Enzymatic Extraction 296
15.5 Purification of Oils and Fats 297
15.5.1 Deacidification 297
15.5.2 Winterization 298
15.5.3 Demetallization 298
15.5.4 Degumming 298
15.6 Production of Biodiesel 299
15.6.1 Catalysts for Biodiesel Production 300
15.6.2 Homogeneous Catalysts 300
15.6.3 Heterogeneous Catalysts 301
15.7 Future Prospects 302
References 302

16 Mainstream Strategies for Biodiesel Production 311
Narita Chanthon, Nattawat Petchsoongsakul, Kanokwan Ngaosuwan, Worapon Kiatkittipong, Doonyapong Wongsawaeng, Weerinda Appamana, and Suttichai Assabumrungrat

16.1 Introduction 311
16.2 Mainstream Strategies and Technology for Biodiesel Production 312
16.2.1 Current Mainstream Operation 312
16.2.1.1 Batch Mode 312
16.2.1.2 Continuous Mode 312
16.2.2 Process Mainstream for Biodiesel Production Based on the Reactor Types 313
16.2.2.1 Rotating Reactor 313
16.2.2.2 Tubular Flow Reactor 315
16.2.2.3 Cavitational Reactor 317
16.2.2.4 Microwave Reactor 318
16.2.2.5 Multifunctional Reactor (Reactive Distillation, Membrane, Centrifugal Reactors) 319
16.2.2.6 Other Process Intensification 322
16.3 Future Prospects and Challenges 323
Acknowledgment 327
References 327

17 Downstream Strategies for Separation, Washing, Purification, and Alcohol Recovery in Biodiesel Production 331
Ramón Piloto-Rodríguez and Yosvany Díaz-Domínguez
17.1 Introduction 331
17.1.1 Factors Affecting Biodiesel Yield 332
17.1.2 Transesterification Reaction Conditions 332
17.1.3 Separation After FAME Conversion 332
17.1.4 Washing 334
17.2 Glycerol Separation and Refining 336
17.3 Membrane Reactors 337
17.4 Methanol Recovery 339
17.5 Additization 339
17.6 Conclusion 342
References 343

18 Heterogeneous Catalytic Routes for Bio-glycerol-Based Acrylic Acid Synthesis 345
Nittan Singh, Pavan Narayan Kalbande, and Putla Sudarsanam
18.1 Introduction 345
18.2 Acrylic Acid Synthesis from Propylene 346
18.3 Acrylic Acid Synthesis from Glycerol 346
18.3.1 Glycerol Dehydration to Acrolein 347
18.3.2 Acrylic Acid Synthesis from Glycerol 349
18.4 Conclusion 351
Acknowledgments 353
References 353

19 Sustainability, Commercialization, and Future Prospects of Biodiesel Production 355
Pothiappan Vairaprokash, and Arumugam Arumugam
19.1 Introduction 355
19.2 Biodiesel as a Promising Renewable Energy Carrier 356
19.3 Overview of the Biodiesel Production Process 358
19.4 Evolution in the Feedstocks Used for the Sustainable Production of Biodiesel 359
19.5 First-Generation Biodiesel and the Challenges in Its Sustainability 359
19.6 Development of Second-Generation Biodiesel to Address the Sustainability 361
19.7 Algae-Based Biodiesel 362
19.8 Waste Oils, Grease, and Animal Fats in Biodiesel Production 363
19.9 Technical Impact by the Biodiesel Usage 363
19.10 Socioeconomic Impacts 364
19.11 Toxicological Impact 364
19.12 Sustainability Challenges in the Biodiesel Production and Use 365
19.13 Concluding Remarks 366
References 366

20 Advanced Practices in Biodiesel Production 377
 Trinath Biswal, Krushna Prasad Shadangi, and Rupam Kataki
20.1 Introduction 377
20.2 Mechanism of Transesterification 378
20.3 Advanced Biodiesel Production Technologies 379
 20.3.1 Production of Biodiesel Using Membrane Reactor 379
 20.3.1.1 Principle 379
 20.3.2 Microwave-Assisted Transesterification Technology 381
 20.3.2.1 Principle 381
 20.3.3 Ultrasonic-Assisted Transesterification Techniques 382
 20.3.4 Production of Biodiesel Using Cosolvent Method 385
 20.3.4.1 Principle 385
 20.3.5 In Situ Biodiesel Production Technology 385
 20.3.5.1 Principle 385
 20.3.6 Production of Biodiesel Through Reactive Distillation Process 387
 20.3.6.1 Principle 387
20.4 Conclusion 389
20.5 Future Perspectives 390
References 390

Index 397
Preface

This book *Biodiesel Production: Feedstocks, Catalysts, and Technologies* includes the contribution of leading researchers in the fields of biodiesel, which will serve as a valuable source of information for scientists, researchers, graduate students, and professionals alike. It focusses on several aspects of biodiesel productions, technologies employed, and sustainability. It consists of 20 chapters, grouped together in three parts, in different technological aspects as follows.

The utilization of conventional and novel feedstocks for biodiesel production will be presented in Chapters 1–4.

Chapter 1 emphasizes on the conversion of several edible vegetable oils and animal fats to biodiesel. Different catalysts used and several factors that affect the overall biodiesel production are comprehensively discussed.

Chapter 2 provides the perspective of the biodiesel production from waste cooking oil via the conventional and modern technologies to bolster competitiveness of biodiesel with petrodiesel.

Chapter 3 addresses the state of the art and future perspectives of nonedible oils for biodiesel production. It provides several important aspects such as cultivation information, fatty acid composition, extraction, and conversion method for biodiesel production.

Chapter 4 proposes the important strategy of microalgae cultivation for the large-scale optimization of lipid accumulation as a potential sustainable approach for biodiesel production.

In the next part, Chapters 5–14, the various types of homogeneous and heterogeneous catalysts for biodiesel production will be discussed.

Chapter 5 reviews the utilization of homogeneous catalysts for various feedstocks under optimum conditions to serve the growing demand of biodiesel as a cost-effective production process.

Chapter 6 summarizes the development of metal oxide catalysts from various sources for biodiesel production. The reaction mechanistic pathways and causes of catalyst deactivation are discussed.

Chapter 7 focuses on the catalytic activity enhancement of metal oxides with particular focus on the role of supporters, their synthesis methods, and physicochemical properties to achieve eco-friendly and economically viable processes of biodiesel production.

Chapter 8 highlights the development of new mixed metal oxides with a variety of novel acidic, basic, and bifunctional catalysts from various feedstocks for enhancing their
catalytic performance. Their stability, catalyst regeneration techniques, and recommendation for full scale biodiesel production are also addressed.

Chapter 9 presents the outlook of using nanotechnology-based catalysts for the development of more efficient, economically viable, durable, and stable nanocatalysts, targeting at achieving higher biodiesel quality and yields.

Chapter 10 reveals the advantages and issues of using ion-exchange resins catalysts for both cation and anion exchange resins especially in continuous biodiesel production.

Chapter 11 discusses the solid bifunctional catalysts with acid–base and Lewis–Bronsted functionalities. The preparation methods, their characterization results, and the optimum condition for biodiesel production were addressed.

Chapter 12 proposes the green concept for biodiesel production using catalysts derived from renewable resources. Essential information on their preparation methods, physico-chemical properties, and catalytic activities as well as the challenges are discussed.

Chapter 13 exploits the usage of the promising ionic liquid catalyst to replace homogeneously catalyzed biodiesel production concurrently with techno-economic analysis, life cycle assessment, environmental impact assessment, and scale-up technologies.

Chapter 14 demonstrates the effective acid/base metal–organic frameworks (MOFs) catalysts for both transesterification and esterification reactions to intensify biodiesel production based on their catalytic synergy.

The strategies in terms of upstream, mainstream, and downstream process to fulfill the economical and sustainable for biodiesel production will be addressed in Chapters 15–21.

Chapter 15 scrutinizes the strategies for upstream biodiesel production dealing with the advanced feedstocks like waste cooking oil, waste animal fats, nonedible oils, or genetically engineered oils based on the appropriate catalyst, reaction conditions, and the following downstream processes.

Chapter 16 approaches the operating key parameters of mainstream strategies in terms of the novel reactor for biodiesel production based on the scientific and practical viewpoints to achieve efficiency and sustainable concept.

Chapter 17 discloses the downstream strategies to accomplish biodiesel standard as well as operating cost reduction using methanol recovery and glycerol by-product refining. The integration of bioenergy systems to produce antioxidant additives for improving biodiesel quality is also encouraged.

Chapter 18 addresses the conversion of bio-glycerol to value-added chemicals especially acrylic acid to boost alternative sustainable routes for biodiesel production.

Chapter 19 introduces the sustainability in the production and use of biodiesel, which is mainly dependent on the types of feedstocks and government policy as the incentives of using biodiesel.

Chapter 20 discusses the advanced, sustainable technology with respect to the diversified feedstock and design of the novel efficient catalytic system for production of biodiesel and its commercialization.
List of Contributors

Pratibha Agrawal
Department of Applied Chemistry
Laxminarayan Institute of Technology
RTM Nagpur University, Nagpur
Maharashtra, India

Weerinda Appamana
Department of Chemical and Materials Engineering, Faculty of Engineering
Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand

Arumugam Arumugam
Department of Chemical Engineering
School of Chemical and Biotechnology Center for Bioenergy, SASTRA Deemed to Be University, Thanjavur, India

Suttichai Assabumrungrat
Center of Excellence on Catalysis and Catalytic Reaction Engineering
Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
Bio-Circular-Green-economy Technology & Engineering Center, BCGeTEC
Department of Chemical Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

Vasudeva Rao Bakuru
Materials science and catalysis division
Poornaprajna Institute of Scientific Research, Bangalore Rural, India

G. Baskar
Department of Biotechnology, St. Joseph’s College of Engineering, Chennai, India

Bidangshri Basumatary
Department of Chemistry, Bodoland University, Kokrajhar, Assam, India

Sanjay Basumatary
Department of Chemistry, Bodoland University, Kokrajhar, Assam, India

Rahul Bhagat
Department of Biotechnology, Government Institute of Science, Aurangabad Maharashtra, India

Trinath Biswal
Department of Chemistry, Veer Surendra Sai University of Technology, Burla. Sambalpur, Odisha. India

Bishwajit Changmai
Department of Chemistry, National Institute of Technology Silchar Silchar, India

Narita Chanthon
Center of Excellence on Catalysis and Catalytic Reaction Engineering
Department of Engineering, Faculty of Engineering, Chulalongkorn University Bangkok, Thailand
Michael Van Lal Chhandama
Department of Biotechnology, School of Sciences (Block-I), JAIN (Deemed-to-be University), Bengaluru, Karnataka, India

Valeria D’Ambrosio
Istituto di Ricerca Sulle Acque, Consiglio Nazionale delle Ricerche (IRSA-CNR) Bari, Italy

Yosvany Díaz-Domínguez
Faculty of Chemical Engineering Universidad Tecnológica de la Habana Havana, Cuba

Marilyn Esclance DMello
Materials science and catalysis division Poornaprajna Institute of Scientific Research, Bangalore Rural, India

Apiluck Eiad-ua
College of Nanotechnology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

Jabbar Gardy
School of Chemical and Process Engineering, University of Leeds Leeds, UK

Gopinath Halder
Department of Chemical Engineering National Institute of Technology Durgapur, India

Ali Hassanpour
School of Chemical and Process Engineering, University of Leeds, Leeds, UK

Balkis Hazmi
Institute of Nanoscience and Nanotechnology (ION2) Universiti Putra Malaysia, Serdang Selangor, Malaysia

Kousuke Hiromori
Department of Chemical Engineering Tohoku University, Sendai, Japan

Avinash P. Ingle
Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Agricultural University, Akola Maharashtra, India

Pavan Narayan Kalbande
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, India

Suresh Babu Kalidindi
Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University Visakhapatnam, India

Aleksandra Sander
Department of Mechanical and Thermal Process Engineering, University of Zagreb Faculty of Chemical Engineering and Technology, Zagreb, Croatia

Bisheswar Karmakar
Department of Chemical Engineering National Institute of Technology Durgapur, India

Rupam Katali
Department of Energy, Tezpur University Tezpur, Assam. India

Worapon Kiatkittipong
Department of Chemical Engineering Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
Hui Li
School of Thermal Engineering,
Shandong Jianzhu University, Jinan,
PR China

Brandon Lowe
School of Chemical and Process
Engineering, University of Leeds
Leeds, UK

Mangesh P. Moharil
Biotechnology Centre, Department
of Agricultural Botany, Dr. Panjabrao
Deshmukh Agricultural University, Akola
Maharashtra, India

Biswajit Nath
Department of Chemistry,
Bodoland University, Kokrajhar,
Assam, India
Department of Chemistry, Science
College Kokrajhar, Assam, India

Kanokwan Ngaosuwan
Division of Chemical Engineering, Faculty
of Engineering, Rajamangala University
of Technology Krungthep, Bangkok,
Thailand

Carlo Pastore
Istituto di Ricerca Sulle Acque, Consiglio
Nazionale delle Ricerche (IRSA-CNR)
Bari, Italy

Nattawat Petchsoongsakul
Center of Excellence on Catalysis
and Catalytic Reaction Engineering
Department of Engineering, Faculty of
Engineering, Chulalongkorn University
Bangkok, Thailand

Ana Petračić
Department of Mechanical and Thermal
Process Engineering, University of Zagreb
Faculty of Chemical Engineering and
Technology, Zagreb, Croatia

Ramón Piloto-Rodríguez
Faculty of Chemical Engineering
Universidad Tecnológica de la Habana
Havana, Cuba

Armando T. Quitain
Faculty of Advanced Science and
Technology, Kumamoto University
Kumamoto, Japan
Center for International Education
Kumamoto University, Kumamoto, Japan

Umer Rashid
Institute of Nanoscience and
Nanotechnology (ION2), Universiti Putra
Malaysia, Serdang Selangor, Malaysia

Samuel Lalthaizuala Rokhum
Hamid Yusuf Department of Chemistry
University of Cambridge, Cambridge, UK
Department of Chemistry, National Institute
of Technology, Silchar, Assam, India

B. Sangeetha
Department of Biotechnology, St. Joseph's
College of Engineering, Chennai, India

Kumudini Belur Satyan
Department of Biotechnology, School of
Sciences (Block-I), JAIN (Deemed-to-be
University), Bengaluru, Karnataka, India

Shreshtha Saxena
Biotechnology Centre, Department
of Agricultural Botany, Dr. Panjabrao
Deshmukh Agricultural University, Akola
Maharashtra, India

Enrico Scelsi
Istituto di Ricerca Sulle Acque, Consiglio
Nazionale delle Ricerche (IRSA-CNR),
Bari, Italy

Krushna Prasad Shadangi
Department of Chemical Engineering,
Veer Surendra Sai University of Technology,
Burla. Sambalpur, Odisha. India
Naomi Shibasaki-Kitakawa
Department of Chemical Engineering, Tohoku University, Sendai, Japan

Nittan Singh
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, India

Atthapon Srifa
Department of Chemical Engineering Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand

Putla Sudarsanam
Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Pune, India
Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, India

Pothiappan Vairaprakash
Department of Chemistry, School of Chemical and Biotechnology, Center for Bioenergy, SASTRA Deemed to Be University, Thanjavur, India

Chhangte Vanlalveni
Department of Botany, Mizoram University, Aizawl, Mizoram, India

Andrew E.H. Wheatley
Hamid Yusuf Department of Chemistry University of Cambridge, Cambridge, UK

Doonyapong Wongsawaeng
Department of Nuclear Engineering Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

Kejun Wu
School of Chemical and Process Engineering, University of Leeds Leeds, UK
School of Chemical and Biological Engineering, Zhejiang University Hangzhou, P.R. China
An Overview of Biodiesel Production

The advent of the industrial revolution had many benefits such as increases in wealth of the average masses, upgrade in living standards, and vast improvements in production of goods (both in quality and in quantity), which reduced prices drastically. Technological advancements also occurred in the transport sector, which enabled ease in travel, while the use of coal and petroleum skyrocketed: an example of this would be the 20-fold increase in coal imports between 1550 and 1700 in Newcastle, England. Consequently, a proportional increase in mining of these fossilized reserves had to be done as far as from the early nineteenth century. Since then, the energy demand per capita has increased manifold to the point where current consumption trends cannot be supported without exhausting the remaining global reserves – alternative energy sources must be sought. Additionally, large areas of forest land had been cleared for fuelwood, which served as the primary energy source for cooking and heating in rural households. Widespread deforestation led to a rapid rise in global temperature since less trees are available for climate modulation. Also, upon using wood and other fossilized sources as fuel, huge amounts of particulate matter, smoke, and other noxious gases (NOXs, SOXs, CO, and CO2) are emitted, and thus their continued emission for the last few centuries has led to global warming, harmful impacts on terrestrial and aquatic life (through acid rain, aquatic pollution resulting in eutrophication), and changes in weather patterns, which has even impacted the overall health and life expectancy of humans (lung diseases caused by air pollution, water pollution leading to chronic diseases, etc.).

In order to combat or gradually reverse the effects of such a global situation where arable land and potable water are scarce, alternative energy sources that have no or negligible environmental impacts must be sought. Thus, renewable energy research over the last few decades has been steadily increasing and is now capable of changing an entire country’s energy consumption trend. A good example is Brazil, which runs entirely on “sustainable” fuels, having produced 26.1% (a staggering 26.72 billion liters) of the global ethanol being used as fuel in 2017, and many countries have tried to replicate the so-called “Brazilian ethanol model.” Among the wide variety of renewable energy sources available, feedstock for biofuels such as biodiesel and bioethanol are limited to a few varieties. Vegetable oils (edible or nonedible) cannot be directly used in engines due to their incompatible physicochemical properties. This had been tested by Dr. Rudolph Diesel who used peanut oil for
his internal combustion (IC) engine and reported many problems in required performance when run for extended durations. Thus, such oils are converted into esters that are the main component of biodiesel, a fuel suitable for use in diesel engines with minor modifications. To convert vegetable oils as well as other potential feedstock such as microalgal lipids, animal fats and greases, waste oils, and other miscellaneous sources, various approaches may be used with different conversion efficiencies. The most efficient conversion process, however, is transesterification, which may or may not be coupled with an esterification pretreatment stage depending on the free fatty acid content of the oil.

For both esterification and transesterification, the reactants are the feedstock and an alcohol, which in the presence of a catalyst are converted into their esters, producing either water or glycerol as by-products. Depending on the reaction conditions (based on the approach used), catalysts may not be required, although a multitude of catalysts have been developed and tested with varying degrees of efficiency. Such catalysts range from the simplest mineral acids, enzymes, or bases, which are added for achieving a homogeneous system and discarded with every use to simple heterogeneous catalysts that rely on solid metal oxides or the use of inert carbonaceous or siliceous biomass doped with the required catalytic groups (including transition metals) or enzymes, as well as nanocatalysts that have increased efficiency (when compared with inert microporous support-based catalysts), while specially designed catalysts based on resin supports or metal organic frameworks have also been developed and can be very efficient but may be difficult to commercialize due to high development costs and unavoidable losses in each cycle of use. Strangely, processes such as supercritical fluid technology or superheated vapor technology can function reliably even without the use of catalysts, although the use of catalysts can augment the process, which may require a cost-to-benefit analysis before commercialization.

The process of biodiesel commercialization does not simply end at its production, since there are many stages that need to be considered for downstream processing as well as the consideration for treatment of hazardous materials generated (such as biodiesel wastewater that contains spent catalyst or leached ions) and the recovery of spent alcohol and the valorization of generated glycerol. Additionally, the produced fuel must have an acceptably long shelf life, and since biodiesel is prone to auto-oxidation (it contains high oxygen content that helps in reducing pollution due to complete fuel combustion), such additives are essential for storage. Such processes generally increase the cost of available fuel, which has made it necessary to consider these hurdles that are yet to be overcome before the complete utilization of biodiesel is feasible as an environment-friendly and affordable alternative to petrodiesel.

Editors: Samuel Lalthazuala Rokhum, Gopinath Halder, Kanokwan Ngaosuwan, Suttichai Assabumrungrat
Part 1

Biodiesel Feedstocks
1

Advances in Production of Biodiesel from Vegetable Oils and Animal Fats

Umer Rashid and Balkis Hazmi

Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor, Malaysia

1.1 Introduction

Currently, the energy requirements of the world are mainly met through fossil fuel resources, such as gasoline, petroleum-based diesel, and natural gas. Such fossil-derived resources are too limited to fulfill the future energy demands and meet the challenges of rapid human population growth coupled with technological developments [1]. Presently, research is progressively more directed toward exploration of alternative renewable fuels. Several types of biofuels, such as vegetable oil/animal fat (raw, processed, or used), methyl esters from vegetable oil/animal fat, and ethanol or liquid fuels from biomass (bioethanol and biomethanol), have been investigated as a replacement for gasoline and petrodiesel [2].

At present over 197.97 million metric tons of 10 major vegetable oils are produced worldwide [3]. Vegetable oils are commonly derived from various oilseed crops. In a vegetable oil, almost 90–95% is glycerides, which are basically esters of glycerol and fatty acids (FAs) [4]. The vegetable oils can be considered as a feasible alternative for diesel fuel as the heating value of vegetable oils is comparable to that of diesel fuel [5, 6]. However, the uses of vegetable oils in direct injection diesel engines are restricted due to some unfavorable physical properties, particularly the viscosity. The viscosity of vegetable oil is roughly 10 times higher than the diesel fuel. Therefore, the use of vegetable oil in direct injection diesel engines creates poor fuel atomization, incomplete combustion, and carbon deposition on the injector [7, 8].

Several techniques are employed to bring down the physical and thermal properties of vegetable oils close to mineral diesel, by which these oils and fats can be used in internal combustion engines as fuel. This mainly requires improvement in viscosity of the vegetable oil. The possible treatments employed to improve the oil viscosity includes dilution with a suitable solvent, microemulsification, pyrolysis, and transesterification [9, 10].

The uses of biodiesel (BD) as a renewable, biodegradable, nontoxic, and eco-friendly neat diesel fuel or in blends with petroleum-based fuels are fascinating [11, 12]. “Biodiesel,” termed as the monoalkyl esters of long-chain FAs, is derived from vegetable oils or animal fats.
Numerous types of conventional and nonconventional vegetable oils and animal fats including those of used oils from the frying industry, soybean oil, rapeseed oil, tallow, rubber seed oil, and palm oil have been investigated to produce BD [13–15]. The production of BD involves the conversion of vegetable oils/animal fats using methanol or ethanol and a catalyst to produce fatty acid methyl esters (FAMEs) and crude glycerin as by-product through a process termed as “transesterification” [16].

The transesterification process is accomplished by reacting vegetable oil with alcohol in the presence of alkaline or acidic catalyst. A catalyst is typically used to accelerate the reaction rate and yield. The stoichiometric equation requires 1 mol of triglyceride and 3 mol of alcohol to form 3 mol of methyl ester and 1 mol of glycerol [17]. Since the reaction is reversible, excess alcohol is used to shift the reaction equilibrium to the product’s side. The most preferred catalysts are sulfuric, sulfonic, and hydrochloric acids as acidic catalysts and sodium hydroxide, sodium methoxide, and potassium hydroxide as alkaline catalysts [18]. The product, fatty esters, have improved viscosity and volatility relative to the triglycerides. A dense, liquid phase rich in glycerol is the coproduct of this process. The separated fatty esters have cetane number and heating value close to that of the conventional diesel. The transesterification process for converting vegetable oils to BD is shown in Figure 1.1.

The “R” groups are the FAs, which are usually 12–22 carbons in length. The large vegetable oil molecule is reduced to about one third of its original size, lowering the viscosity and making it like diesel fuel. The resulting fuel can work like diesel fuel in an engine. The by-product “glycerin” produced in this process is valuable due to its diverse industrial applications [19].

Technically, BD is a fuel comprising of monoalkyl esters of long-chain FAs derived from vegetable oils or animal fat, which meets current EN 14214 and ASTM D 6751 BD standards of Europe and the United States, respectively. These standards are frequently employed as references to evaluate and compare the properties of other fuels.

Presently, the BD is commonly produced using a base-catalyzed transesterification reaction because it involves low temperature and pressure processing, high conversions, no intermediate steps, and lower costs of processing materials [20]. Alkoxides and hydroxides of potassium and sodium are often used as catalysts in the transesterification of refined oils and low FA greases and fats. However, acid esterification followed by transesterification of high free fatty acid (FFA) fats and oils is also applicable. The base catalysts have better efficiency than the acid catalysts [21]. The base-catalyzed transesterification reaction can be carried out at lower temperature, yet at room temperature, with the base catalysts, whereas acid catalysis required higher temperature (100 °C) and longer reaction time. During the process, basic catalyst breaks the FAs from the glycerin one by one. When a methanol molecule contacts an FA molecule, it will bond and form BD molecule. The hydroxyl group

\[\text{CH}_2\text{OCOR}_1 \quad \text{R}_1\text{COOCH}_3 \quad \text{CH}_2\text{OH} \]
\[\text{CH}_2\text{OCOR}_2 + 3 \text{CH}_3\text{OH} \leftrightarrow \text{R}_2\text{COOCH}_3 + \text{CH}_2\text{OH} \]
\[\text{CH}_2\text{OCOR}_3 \quad \text{R}_3\text{COOCH}_3 \quad \text{CH}_2\text{OH} \]

Figure 1.1 General reaction for transesterification of vegetable oil.
from the catalyst alleviates the glycerol formation. The resulting product named as methyl esters (BD) has appreciably lower viscosity and increased volatility relative to the triglycerides present in vegetable oils [22–24].

The second usual method of producing BD involves the use of an acid as a substitute of a base catalyst. Any mineral acid can be employed to catalyze the process; the most used acids are sulfuric acid and sulfonic acid. Although yield is high, the acids, being corrosive, may cause damage to the equipment, and the reaction rate is also observed to be relatively low [9, 21]. Oil feedstocks containing more than 4% FFAs must pass through an acid esterification process to increase the BD yield [25]. Such feedstocks are filtered and preprocessed to remove water and contaminants and then fed to the acid esterification process. The catalyst (sulfuric acid) is dissolved in methanol and then mixed with the pretreated oil [26].

The alcohols employed in the transesterification are generally short-chain alcohols such as methanol, ethanol, propanol, and butanol producing esters named as methyl-, ethyl-, propyl-, and butyl-esters, respectively [9, 10]. It is reported that when transesterification of soybean oil using methanol, ethanol, and butanol was performed, 96–98% of ester’s yield could be obtained after an hour of reaction [27]. Though utilizing different alcohols presents little differences with regard to the kinetic of reaction, the final yield of esters remains unchanged. Thus, assortment of the alcohol is based on cost and performance consideration. Generally, reaction temperature is set at near the boiling point of the alcohol used [28].

Due to the reality that many vegetable oils, including soybean, canola (rapeseed) oil, and rice bran oil, have a major number of FAs with double bonds, oxidative stability is a problem, particularly when storing BD for longer period of time [29, 30]. This problem becomes severe due to improper storage conditions, which may include exposure to air and/or light, temperatures above ambient, and presence of extraneous materials (contaminants) with catalytic effect on oxidation. Some additives such as antioxidants might control the oxidation.

Characterization of BD fuel properties and evaluation of its quality are the matters of great concern for the successful commercialization of this fuel. A high fuel value with no operational problems is a condition for market acceptance of BD. Accordingly, the analysis of BD and the monitoring of the transesterification reaction have been the subject of numerous publications [31, 32]. The constraints, which are used to define the quality of BD, can be divided in two groups [33]. One of them is also used for mineral diesel, and the second illustrates the composition and purity of fatty esters. The former includes, for example, density, viscosity, flash point, sulfur percentage, carbon residue, sulfated ash percentage, cetane number, and acid number. The latter comprises, for example, methanol, free glycerol, total glycerol, phosphorus contents, water, and esters content. Chromatography and spectroscopy are the mainly used analytical methods for BD analyses, but procedures based on physical properties are also available [34]. Furthermore, it is important to mention that in most chromatographic analyses, mainly gas chromatography (GC) has been applied to methyl and not to ethyl esters [29].

As the demand for vegetable oils for food has increased tremendously in recent years, hence, the contribution of nonedible oils such as jatropha, *Moringa oleifera*, rice bran oils, etc. can play an important role for BD production. In view of the limited petro-oil resources and rapidly growing energy demands of the world, there is an extensive need to take immediate initiatives for exploring alternative energy sources to meet the domestic needs and
reduce the dependence on imported fossil fuels. In view of the future perspectives of biofuels, the present book chapter was designed with the main purposes to assess the feasibility of BD production from multi-feedstock vegetable oil sources.

1.2 History of the Use of Vegetable Oil in Biodiesel

The idea to use vegetable oils as fuels for diesel engines dates back to more than one hundred years. Historically, Rudolf Diesel, the inventor of diesel engine, at the Paris Exhibition in 1900, conducted engine tests, for the first time, on peanut oil [22, 35]. At that moment Diesel said, “The use of vegetable oils for engine fuels may seem insignificant today. However, such oils may in course of time be as important as petroleum and the coal tar products of the present time.” Today, over a century later, the scientific community is working to fulfill his dream by considering potential benefits of BD as an alternative fuel to petrodiesel for future uses.

1.3 Feedstocks for Biodiesel Production

All over the world, the usual lipid feedstocks for BD production are refined vegetable oils. In this group, the oil of choice varies with location according to availability; the most abundant lipid is generally the most common feedstock. The bases for this are not only the desire to have an ample supply of product fuel but also because of the inverse relation between supply and cost. Refined oils can be comparatively costly under the best of conditions, compared with petroleum products, and the choice of oil for BD production depends on local availability and corresponding affordability. The four oil crops clearly dominate the feedstock sources used for worldwide BD production. With a share of nearly 85%, rapeseed oil is by far leading the field, followed by sunflower seed oil, soybean oil, and palm oil [36]. Apart from the “great four” – rapeseed oil, sunflower seed oil, soybean oil, and palm oil in BD production – other edible plant oils have also successfully been transesterified to produce BD.

The choice of raw material used for BD production in a specific region mainly depends on the respective climatic conditions. Thus, rapeseed and sunflower oils are mainly used in the European Union [37], palm oil predominates in BD production in tropical countries [38, 39], and soybean oil [40] and animal fats are the major feedstocks in the United States. FA ester production has also been demonstrated from a variety of other feedstocks, including the oils of coconut [41], rice bran [42], Thespesia populnea [43], safflower [44], palm kernel [45], *M. oleifera* [46], *Citrus reticulata* (mandarin orange) [47], *Jatropha curcas* [48], Ethiopian mustard [13], *Cynara cardunculus* [49], *Hibiscus esculentus* [50], maize [51], *Cyperus esculentus* (Barminas et al. [52]), *Prunus mahaleb* [53], kapok [54], tobacco [55], milkweed [7], *Yucca aloifolia* [56], *Oleum papaveris seminis* [57], *Pongamia* [58], *Brassica napus* [59], *Citrullus colocynthis* [53], rubber seed oils [60], palm FA distillate [61], the animal fats, tallow [7, 62], lard [63], and waste oils [64, 65]. As such, any animal or plant lipid should be a ready substrate for the production of BD. Such features as supply, cost, storage properties, and engine performance will determine whether a particular potential feedstock is actually acceptable for commercial fuel production.