Department of Computer Application, B.S. Abdur Rahman Crescent Institute of Science, Technology, Chennai, India
K. Kalaiselvi
Department of Computer Science, Vels Institute of Science, Technology and Advanced Studies, Chennai, India
Dinesh Goyal
Poornima Institute of Engineering & Technology, Jaipur, India
and
Dhiya AL-Jumeily
Faculty of Engineering and Technology, Liverpool John Moores University, UK
This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA
For more information about Scrivener publications please visit www.scrivenerpublishing.com.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
Wiley Global Headquarters
111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchant-ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.
Library of Congress Cataloging-in-Publication Data
ISBN 978-1-119-79179-9
Cover image: Pixabay.Com
Cover design by Russell Richardson
Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines
Printed in the USA
10 9 8 7 6 5 4 3 2 1
Preface
The power of healthcare data analytics is being increasingly used in the industry. With this in mind, we wanted to write a book geared towards those who want to learn more about the techniques used in healthcare analytics for efficient analysis of data. Since data is generally generated in enormous amounts and pumped into data pools, analyzing data patterns can help to ensure a better quality of life for patients. As a result of small amounts of health data from patients suffering from various health issues being collectively pooled, researchers and doctors can find patterns in the statistics, helping them develop new ways of forecasting or diagnosing health issues, and identifying possible ways to improve quality clinical care. Big data analytics supports this research by applying various processes to examine large and varied healthcare data sets. Advanced analytics techniques are used against large data sets to uncover hidden patterns, unknown correlations, market trends, customer preferences, and other useful information. This book covers both the theory and application of the tools, techniques and algorithms for use in big data in healthcare and clinical research. It provides the most recent research findings to derive knowledge using big data analytics, which helps to analyze huge amounts of real-time healthcare data, the analysis of which can provide further insights in terms of procedural, technical, medical, and other types of improvements in healthcare. In addition, this book also explores various sources of personalized healthcare data.
For those who are healthcare researchers, this book reveals the innovative hybrid machine learning and deep learning techniques applied in various healthcare data sets. Since machine learning algorithms play a major role in analyzing the volume, veracity and velocity of big data, the scope of this book focuses on various kinds of machine learning algorithms existing in the areas such as supervised, unsupervised, semi-supervised, and reinforcement learning. It guides readers in implementing the Python environment for machine learning in various application domains. Furthermore, predictive analytics in healthcare is explored, which can help to detect early signs of patient deterioration from the ICU to a general ward, identify at-risk patients in their homes to prevent hospital readmissions, and prevent avoidable downtime of medical equipment.
Also explored in the book are a wide variety of machine learning techniques that can be applied to infer intelligence from the data set and the capabilities of an application. The significance of data sets for various applications is also discussed along with sample case studies. Moreover, the challenges presented by the techniques and budding research avenues necessary to see their further advancement are highlighted.
Patient’s healthcare data needs to be protected by organizations in order to prevent data loss through unauthorized access. This data needs to be protected from attacks that can encrypt or destroy data, such as ransomware, as well as those attacks that can modify or corrupt a patient’s data. Security is paramount since a lot of devices are connected through the internet of things and serve many healthcare applications, including supporting smart healthcare systems in the management of various diseases such as diabetes, monitoring heart functions, predicting heart failure, etc. Therefore, this book explores the various challenges for smart healthcare, including privacy, confidentiality, authenticity, loss of information, attacks, etc., which create a new burden for providers to maintain compliance with healthcare data security.
In addition to inferring knowledge fusion patterns in healthcare, the book also explores the commercial platforms for healthcare data analytics. The new benefits that healthcare data analytics brings to the table, run analytics and unearth information that could be used in the decision-making of practitioners by providing insights that can be used to make immediate decisions. Also investigated are the new trends and applications of big data analytics for medical science and healthcare. Healthcare professionals, researchers, and practitioners who wish to figure out the core concepts of smart healthcare applications and the innovative methods and technologies used in healthcare will all benefit from this book.