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PREFACE

The rocket propulsion business in the United States of America appears to be chang-
ing. In the past, and also currently, the business has been planned, financed, and
coordinated mostly by the Department of Defense and NASA. Government fund-
ing, government test or launch facilities, and other government support was provided.
As it happens in all fields old-time companies have changed ownership, some have
been sold or merged, somewent out of business, some reduced the number of employ-
ees, and other companies have entered the field. New privately financed companies
have sprung up and have developed their own rocket propulsion systems and flight
vehicles as well as their own test, manufacturing, and launch facilities. These new
companies have received some government contracts. Several privately owned com-
panies have developed on their own useful space vehicles and rocket propulsion
systems that were not originally in the government’s plan. Although business cli-
mate changes noticeably influence rocket activities, it is not the purpose of this book
to describe such business effects, but to present rocket propulsion principles and
to give recent information and data on technical and engineering aspects of rocket
propulsion systems.

All aerospace developments are aimed either at better performance, or higher reli-
ability, or lower cost. In the past, when developing or modifying a rocket propulsion
system for space applications, the emphasis has been primarily on very high reliabil-
ity and, to a lesser extent, on high performance and low cost. Each of the hundreds
of components of a propulsion system has to do its job reliably and without fail-
ure during operation. Indeed, the reliability of space launches has greatly improved
world wide. In recent years emphasis has been placed primarily on cost reduction, but
with continuing lower priority efforts to further improve performance and reliability.
Therefore, this Ninth Edition has a new section and table on cost reduction of rocket

xvii
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xviii PREFACE

propulsion systems. Also, in this book environmental compatibility is considered to
be part of reliability

This Ninth Edition is organized into the same 21 chapters and subjects, as in the
Eighth Edition, except that some aspects are treated in more detail. The names of the
21 chapters can be found in the Table of Contents. There are some changes, additions,
improvements, and deletions in every chapter. A few problems have printed answers
so students or other readers can self-check their solutions.

About half of this new edition is devoted to chemical rocket propulsion (solid
propellant motors, liquid propellant rocket engines, and hybrid rocket propulsion
systems). The largest number of individual rocket propulsion systems (currently in
use, on stand-by, or in production) are solid propellant rocket motors; they vary in
size, complexity, and duration; most systems are for military or defense applications.
The next largest number in production or currently in use for space flight or mis-
sile defense are liquid propellant rocket engines; they vary widely in size, thrust or
duration. Many people in aerospace consider this rocket propulsion technology to
be mature. Enough technical information is available from public sources and from
skilled personnel so that any new or modified rocket propulsion system can be devel-
oped with some confidence.

There have been several new applications (different flight vehicles, different mis-
sions) using existing or modified rocket propulsion systems. Several of these new
applications are mentioned in this book.

Compared to the prior edition this new edition has less information or data of
recently retired rocket engines, such as the engines for the Space Shuttle (retired
in 2011) or Energiya; these have been replaced with facts from rocket propulsion
systems that are likely to be in production for a long time. This new edition gives
data on several rocket propulsion systems that are currently in production; examples
are the RS-68 and the Russian RD-191 engines. Relatively little discussion of current
research and developments is contained in this Ninth Edition; this is because it is
not known when any particular development will lead to a better propulsion system,
a better material of construction, a better propellant, or a better method of analysis,
even if it appears to be promising at the present time. It is unfortunate that a majority
of Research and Development programs do not lead to production applications.

Subjects new to the book include the Life of Liquid Propellant Thrust Chambers,
a powerful new solid propellant explosive ingredient and two sections on variable
thrust rocket propulsion. The discussion of dinitrogen oxide propellant is new, and
additions were made to the write-ups of hydrogen peroxide and methane. Several
different liquid propellant rocket engines are shown as examples of different engine
types. The rocket propulsion system of the MESSENGER space probe is described
as an example of a multiple thruster pressure feed system; its flow diagram replaces
the Eighth Edition’s one for the Space Shuttle. The Russian RD-191 engine (for the
Angara series of launch vehicles) serves as an example for a high performance staged
combustion engine cycle. The RS-68A presently has the highest thrust of any liquid
oxygen/liquid hydrogen engine and it is an example of an advanced gas generator
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engine cycle. The RD-0124 illustrates an upper stage rocket engine with four thrust
chambers and a single turbopump. Currently, a new manufacturing process known as
Additive Manufacturing is being investigated for replacing parts or components of
existing liquid propellant rocket engines.

The Ninth Edition also has the following other subjects, which are new to this
book: upper stages with all electric propulsion, a dual inlet liquid propellant centrifu-
gal pump for better cavitation resistance, topping-off cryogenic propellant tanks just
prior to launching, benefits of pulsing of small thrusters, avoiding carbon contain-
ing deposits in the passages of liquid propellant cooling jackets, and a two-kilowatt
arcjet. Since it is unlikely that nuclear power rocket propulsion systems development
will again be undertaken in the next decade or that gelled propellants or aerospike
nozzles will enter into production anytime soon, these three topics have largely been
deleted from the new edition.

All Problems and Examples have been reviewed. Some have been modified, and
some are new. A few of the problems which were deemed hard to solve have been
deleted. The index at the end of the book has been expanded, making it somewhat
easier to find specific topics in the book.

Since its first edition in 1949 this book has been a most popular and authorita-
tive work in rocket propulsion and has been acquired by at least 77,000 students and
professionals in more than 35 countries. It has been used as a text in graduate and
undergraduate courses at about 55 universities. It is the longest living aerospace book
ever, having been in print continuously for 67 years. It is cited in two prestigious pro-
fessional awards of the American Institute of Aeronautics and Astronautics. Earlier
editions have been translated into Russian, Chinese, and Japanese. The authors have
given lectures and three-day courses using this book as a text in colleges, companies
and Government establishments. In one company all new engineers are given a copy
of this book and asked to study it.

As mentioned in prior editions, the reader should be very aware of the hazards
of propellants, such as spills, fires, explosions, or health impairments. The authors
and the publisher recommend that readers of this book do not work with hazardous
propellant materials or handle them without an exhaustive study of the hazards, the
behavior, and properties of each propellant, and without rigorous safety training,
including becoming familiar with protective equipment. People have been killed,
when they failed to do this. Safety training and propellant information is given rou-
tinely to employees of organizations in this business. With proper precautions and
careful design, all propellants can be handled safely. Neither the authors nor the pub-
lisher assume any responsibility for actions on rocket propulsion taken by the reader,
either directly or indirectly. The information presented in this book is insufficient and
inadequate for conducting propellant experiments or rocket propulsion operations.

This book and its prior editions use both the English Engineering (EE) system
of units (foot, pound) and the SI (Systėme International) or metric system of units
(m, kg), because most drawings and measurements of components and subassemblies
of chemical rocket propulsion systems, much of the rocket propulsion design and
most of the manufacturing is still done in EE units, Some colleges and research
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organizations in the United States, and most propulsion organizations in other
countries use the SI system of units. This dual set of units is used, even though the
United States has been committed to switch to SI units.

Indeed the authors gratefully acknowledge the good help and information obtained
from experts in specific areas of propulsion. James H. Morehart, The Aerospace
Corporation, (information on various rocket engines and propellants) 2005 to 2015;
Jeffrey S. Kincaid, Vice President (retired), Aerojet Rocketdyne, Canoga Park, CA
(RS-68 engine data and figures, various propulsion data) 2012 to 2915; Roger Beren-
son, Engine Program Chief Engineer, Aerojet Rocketdyne, Canoga Park, CA, (RS-68
and RS-25 engine and general propulsion data) 2015; Mathew Rottmund, United
Launch Alliance, Centennial, CO. (launch vehicle propulsion issues), 2014 to 2015;
Olwen M. Morgan (retired), Marketing Manager, Aerojet Rocketdyne, Redmond,
WA, (MESSENGER space probe; monopropellants); 2013 to 2016; Dieter M. Zube,
Aerojet Rocketdyne, Redmond (view and data on hydrazine arcjet); 2013-2015;
Jeffrey D. Haynes, Manager, Aerojet Rocketdyne, (additive manufacturing informa-
tion), 2015; Leonard H. Caveny, Consultant, Fort Washington, MD, (solid propellant
rocket motors); Russell A. Ellis, Consultant, (solid propellant rocket motors); 2015;
David K. McGrath, Director Systems Engineering, Orbital ATK, Missile Defense
and Controls, Elkton, MD, (solid propellant rocket motors); 2014 to 2015; Eckart W.
Schmidt, Consultant for Hazardous Materials, Bellevue, WA, (Hydrazine and liquid
propellants), 2013 to 2015; Michael J. Patterson, Senior Technologist, In-Space
Propulsion, NASA Glenn Research Center, Cleveland, OH (electric propulsion
information), 2014; Rao Manepalli, Deptford, NJ, formerly with Indian Space
Research Organization (rocket propulsion systems information); 2011 to 2013; Dan
Adamski, Aerojet Rocketdyne, (RS-68 flowsheet), 2014; Frederick S. Simmons
(retired), The Aerospace Corporation (review of Chapter 20); 2015 to 2016.

The authors have made an effort to verify and/or validate all information in this
ninth edition. If the reader finds any errors or important omissions in the text of this
edition we would appreciate bringing them to our attention so that we may evaluate
them for possible inclusion in subsequent printings.

George P. Sutton
Los Angeles, California

Oscar Biblarz,
Monterey, California
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CHAPTER 1

CLASSIFICATION

In general terms, propulsion is the act of changing the motion of a body with respect
to an inertial reference frame. Propulsion systems provide forces that either move
bodies initially at rest or change their velocity or that overcome retarding forces when
bodies are propelled through a viscous medium. The word propulsion comes from the
Latin propulsus,which is the past participle of the verb propellere,meaning “to drive
away.” Jet propulsion is a type of motion whereby a reaction force is imparted to a
vehicle by the momentum of ejected matter.

Rocket propulsion is a class of jet propulsion that produces thrust by ejecting
matter, called the working fluid or propellant, stored entirely in the flying vehicle.
Duct propulsion is another class of jet propulsion and it includes turbojets and ram-
jets; these engines are more commonly called air-breathing engines. Duct propulsion
devices mostly utilize their surrounding medium as the propellant, energized by its
combustion with the vehicle’s stored fuel. Combinations of rockets and duct propul-
sion devices have been attractive for some applications, and one is briefly described
in this chapter.

The energy source most commonly used in rocket propulsion is chemical com-
bustion. Energy can also be supplied by solar radiation and by a nuclear reactor.
Accordingly, the various propulsion devices in use can be divided into chemical
propulsion, nuclear propulsion, and solar propulsion. Table 1–1 lists many important
propulsion concepts according to their energy source and type of propellant. Radiant
energy may originate from sources other than the sun and theoretically includes the
transmission of energy by ground-basedmicrowaves and laser beams. Nuclear energy
originates in transformations of mass within atomic nuclei and is generated by either
fission or fusion. Energy sources are central to rocket performance and several kinds,
both within and external to the vehicle, have been investigated. The useful energy

1
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2 CLASSIFICATION

TABLE 1–1. Energy Sources and Propellants for Various Propulsion Concepts

Energy Sourcea

Propulsion Device Chemical Nuclear Solar Propellant or Working Fluid

Turbojet D/P Fuel + air
Turbo–ramjet TFD Fuel + air
Ramjet (hydrocarbon fuel) D/P TFD Fuel + air
Ramjet (H2 cooled) TFD Hydrogen + air
Rocket (chemical) D/P TFD Stored propellant
Ducted rocket TFD Stored solid fuel +

surrounding air
Electric rocket D/P D/P Stored propellant
Nuclear fission rocket TFD Stored H2

Solar-heated rocket TFD Stored H2

Photon rocket (big light
bulb)

TFND Photon ejection (no stored
propellant)

Solar sail TFD Photon reflection (no stored
propellant)

aD/P developed and/or considered practical; TFD, technical feasibility has been demonstrated, but devel-
opment is incomplete; TFND, technical feasibility has not yet been demonstrated.

input modes in rocket propulsion systems are either heat or electricity. Useful output
thrust comes from the kinetic energy of the ejected matter and from the propellant
pressure on inner chamber walls and at the nozzle exit; thus, rocket propulsion sys-
tems primarily convert input energies into the kinetic energy of the exhausted gas.
The ejected mass can be in a solid, liquid, or gaseous state. Often, combinations of
two or more phases are ejected. At very high temperatures, ejected matter can also
be in a plasma state, which is an electrically conducting gas.

1.1. DUCT JET PROPULSION

This class, commonly called air-breathing engines, comprises devices which entrain
and energize air flow inside a duct. They use atmospheric oxygen to burn fuel stored
in the flight vehicle. This class includes turbojets, turbofans, ramjets, and pulse-
jets. These are mentioned here primarily to provide a basis for comparison with
rocket propulsion and as background for combined rocket–duct engines, which are
mentioned later. Table 1–2 compares several performance characteristics of specific
chemical rockets with those of typical turbojets and ramjets. A high specific impulse
(which is a measure of performance to be defined later) relates directly to long-flight
ranges and thus indicates the superior range capability of air-breathing engines over
chemical rocket propulsion systems at relatively low earth altitudes. However, the
uniqueness of rocket propulsion systems (for example, high thrust to weight, high
thrust to frontal area, and thrust nearly independent of altitude) enables flight in
rarefied air and exclusively in space environments.
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1.1. DUCT JET PROPULSION 3

TABLE 1–2. Comparison of Several Characteristics of a Typical Chemical Rocket
Propulsion System and Two-Duct Propulsion Systems

Feature

Chemical
Rocket Engine
or Rocket Motor Turbojet Engine Ramjet Engine

Thrust-to-weight ratio,
typical

75:1 5:1, turbojet and
afterburner

7:1 at Mach 3 at
30,000 ft

Specific fuel consumption
(pounds of propellant or
fuel per hour per pound
of thrust)a

8–14 0.5–1.5 2.3–3.5

Specific thrust (pounds of
thrust per square foot
frontal area)b

5000–25,000 2500 (low Machc

numbers at sea
level)

2700 (Mach 2 at sea
level)

Specific impulse, typicald

(thrust force per unit
propellant or fuel
weight flow per second)

270 sec 1600 sec 1400 sec

Thrust change with
altitude

Slight increase Decreases Decreases

Thrust vs. flight speed Nearly constant Increases with
speed

Increases with speed

Thrust vs. air temperature Constant Decreases with
temperature

Decreases with
temperature

Flight speed vs. exhaust
velocity

Unrelated, flight
speed can be
greater

Flight speed always
less than exhaust
velocity

Flight speed always
less than exhaust
velocity

Altitude limitation None; suited to
space travel

14,000–17,000 m 20,000 m at Mach 3
30,000 m at Mach 5
45,000 m at Mach 12

aMultiply by 0.102 to convert to kg/(hr-N).
bMultiply by 47.9 to convert to N/m2.
cMach number is the ratio of gas speed to the local speed of sound (see Eq. 3–22).
dSpecific impulse is a performance parameter defined in Chapter 2.

The turbojet engine is the most common of ducted engines. Figure 1–1 shows its
basic elements.

For supersonic flight speeds above Mach 2, the ramjet engine (a pure duct engine)
becomes possible for flights within the atmosphere. Compression is purely gas
dynamic and thrust is produced by increasing the momentum of the subsonic com-
pressed air as it passes through the ramjet, basically as is accomplished in the turbojet
and turbofan engines but without any compressor or turbine hardware. Figure 1–2
shows the basic components of a ramjet. Ramjets with subsonic combustion and
hydrocarbon fuels have an upper speed limit of approximately Mach 5; hydrogen
fuel, with hydrogen cooling, raises this to at least Mach 16. Ramjets with supersonic
combustion, known as scramjets, have flown in experimental vehicles. All ramjets



Trim Size: 6.125in x 9.25in Sutton c01.tex V1 - 03/21/2018 7:35am Page 4�

� �

�

4 CLASSIFICATION
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FIGURE 1–1. Simplified schematic diagram of a turbojet engine.

FIGURE 1–2. Simplified diagram of a ramjet with a supersonic inlet (a converging/diverging
flow passage).

must depend on rocket or aircraft boosters for initial acceleration to supersonic
conditions and operating altitudes, and on oblique shocks to compress and decel-
erate the entrance air. Applications of ramjets with subsonic combustion include
shipboard- and ground-launched antiaircraft missiles. Studies of a hydrogen-fueled
ramjet for hypersonic aircraft looked promising, but as of this writing they have
not been properly demonstrated; one supersonic flight vehicle concept combines a
ramjet-driven high-speed airplane and a one- or two-stage rocket booster for driving
the vehicle to its operating altitude and speed; it can travel at speeds up to a Mach
number of 25 at altitudes of up to 50,000 m.

No truly new or significant rocket technology concepts have been implemented
in recent years, reflecting a certain maturity in this field. Only a few new applica-
tions for proven concepts have been found, and those that have reached production
are included in this edition. The culmination of research and development efforts
in rocket propulsion often involves adaptations of new approaches, designs, materi-
als, as well as novel fabrication processes, cost, and/or schedule reductions to new
applications.

1.2. ROCKET PROPULSION

Rocket propulsion systems may be classified in a number ways, for example, accord-
ing to energy source type (chemical, nuclear, or solar) or by their basic function
(booster stage, sustainer or upper stages, attitude control, orbit station keeping, etc.)
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1.2. ROCKET PROPULSION 5

or by the type of vehicle they propel (aircraft, missile, assisted takeoff, space vehicle,
etc.) or by their size, type of propellant, type of construction, and/or by the number
of rocket propulsion units used in a given vehicle.

Another useful way to classify rockets is by the method of producing thrust. The
thermodynamic expansion of a gas in a supersonic nozzle is utilized in most com-
mon rocket propulsion concepts. The internal energy of the propellant is converted
into exhaust kinetic energy, and thrust is also produced by the pressure on surfaces
exposed to the exhaust gases, as will be shown later. This same thermodynamic the-
ory and the same generic equipment (i.e., a chamber plus a nozzle) is used for jet
propulsion, rocket propulsion, nuclear propulsion, laser-thermal and solar-thermal
propulsion, and in some types of electrical propulsion. Totally different methods of
producing thrust are used in nonthermal types of electric propulsion. As described
below, these electric systems use magnetic and/or electric fields to accelerate elec-
trically charged atoms or molecules at very low gas densities. It is also possible to
obtain very small accelerations by taking advantage of the difference in gravitational
attraction as a function of earth altitude, but this method is not treated in this book.

The Chinese developed and used solid propellant in rocket missiles over 800 years
ago, and military “bombardment rockets” were used frequently in the eighteenth and
nineteenth centuries. However, the most significant developments of rocket propul-
sion took place in the twentieth century. Early pioneers included the Russian Kon-
stantin E. Ziolkowsky, who is credited with the fundamental rocket flight equation
and his 1903 proposals to build rocket vehicles. Robert H. Goddard, an American, is
credited with the first flight using a liquid propellant rocket engine in 1926. For the
history of rockets, see Refs. 1–1 to 1–7.

Chemical Rocket Propulsion

Energy from the combustion reaction of chemical propellants, usually a fuel and an
oxidizer, in a high-pressure chamber goes into heating reaction product gases to high
temperatures (typically 2500 to 4100 ∘C or 4500 to 7400 ∘F). These gases are sub-
sequently expanded in a supersonic nozzle and accelerated to high velocities (1800
to 4300 m/sec or 5900 to 14,100 ft/sec). Since such gas temperatures are about twice
the melting point of steel, it is necessary to cool or insulate all the surfaces and struc-
tures that are exposed to the hot gases. According to the physical state of the stored
propellant, there are several different classes of chemical rocket propulsion devices.

Liquid propellant rocket engines use propellants stored as liquids that are fed under
pressure from tanks into a thrust chamber.∗ A typical pressure-fed liquid propellant
rocket engine system is schematically shown in Fig. 1–3. The bipropellant consists
of a liquid oxidizer (e.g., liquid oxygen) and a liquid fuel (e.g., kerosene). A mono-
propellant is a single liquid that decomposes into hot gases when properly catalyzed.

∗The term thrust chamber, used for the assembly of the injector, nozzle, and chamber, is preferred by
several official agencies and therefore has been used in this book. For small spacecraft control rockets the
term thruster (a small thrust chamber) is commonly used, and this term will be used in some sections of
this book.
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-

FIGURE 1–3. Schematic flow diagram of a liquid propellant rocket engine with a gas pres-
sure feed system. The dashed lines show a second thrust chamber, but some engines have
more than a dozen thrust chambers supplied by the same feed system. Also shown are
components needed for start and stop, controlling tank pressure, filling propellants and pres-
surizing gas, draining or flushing out remaining propellants, tank pressure relief or venting,
and several sensors.

Gas pressure feed systems are usedmostly on low-thrust, low-total-energy propulsion
systems, such as those used for attitude control of flying vehicles, often with more
than one thrust chamber per engine. The larger bipropellant rocket engines use one or
more turbopump-fed liquids as shown in Fig. 1–4. Pump-fed liquid rocket systems
are most common in applications needing larger amounts of propellant and higher
thrust, such as those in space launch vehicles. See Refs. 1–1 to 1–6.


